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Abstract: Data mining playing vital information in extracting useful information from large
amount of data set. Apriori algorithm generate useful rule by finding frequent itemset from
huge data set. In this paper can apply the Apriori Algorithm to generate rules for the given
data set (bank) using Waikato Environment for Knowledge Analysis tool. Bank dataset is
taken from UCI machine learning repository. These articles explore and visualize the apriori
technique in data mining concept and analysis the customer good patterns to take the decision
to give loan for customers.
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1. INTRODUCTION

The data mining represents mining the knowledge from large data. Topics such as
knowledge discovery, query language, decision tree induction, classification and prediction,
cluster analysis, and how to mine the Web are functions of data mining. Manual analyses are
time consuming in the real world. In this situation, Waikato Environment for Knowledge
Analysis tool (WEKA) can use for automating the task.

Weka is a collection of machine learning algorithms for data mining tasks. Classification
was performed using WEKA in data mining research. WEKA is a data mining workbench that
allows comparison between many different machine learning algorithms. In addition, it also has
functionality for feature selection, data pre-processing and data visualization [1]. The algorithms
can either be applied directly to a dataset or called from Java code. Weka contains tools for data
pre-processing, classification, regression, clustering, association rules and visualization. Well-
suited for developing new machine learning schemes. Weka contains tools for data pre-
processing, classification, regression, clustering, association rules, and visualization. It is also
well-suited for developing new machine learning schemes.

2. RELATED WORK

The more associations between accident factors and accident severity were illustrated
when applying Apriori algorithm [2]. The predictive Apriori algorithm could derive more
number of rules that could be useful when studying the effect of each individual factor to
accident severity. These results can help the decision makers in the traffic accident department
to take actions based on various hidden patterns from the data. The swarm based techniques to
extract association rules for student performance prediction as a multi-objective classification
problem is analysis by [3]. In this algorithm takes a low convergence time and it used a few
number of parameters. Honeybee Colony Optimization and Particle Swarm Optimization are the
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two used metaheuristics to extract association rules. These are used in this investigation and
WEKA, Rapidminer and KEEL tools are used for comparing the technique. Various type of
analysis is carried out using association rules [4-6] in data mining through WEKA
environments. The Weka tool is used for disease prediction. Data mining is a well known
technique used by health organizations for classification of diseases such as dengue, diabetes
and cancer in bioinformatics research [7].

3. EXPERIMENTS DESIGN
Implementation of Association Rule Mining is carried out in bank datasets using Weka
tool.
3.1 Dataset description
Association rule works only with nominal type and the data values are discrete in nature.
Number of Instances: 600
Number of Attributes: 12

3.2 Attributes description
Table.1 shows the list of attributes in bridge dataset. It also represents the data type for
each attributes. Fig.1 and Fig.2 show the front panel of the Weka and location of the bank-
data.csv file respectively. Bank datasets attributes are viewed by viewer in the WEKA explorer
panel. It is illustrated in Fig. 3.

Table.1 List of attributes

Attribute Description Data type
id a unique identification number Nominal
age age of customer in years Numeric
sex MALE / FEMALE Nominal
region inner_city/rural/suburban/town Nominal
income income of customer Numeric
married is the customer married (YES/NO) Nominal
children number of children Numeric
car does the customer own a car (YES/NO) Nominal
save_acct does the customer have a saving account (YES/NO) Nominal
current_acct |does the customer have a current account (YES/NO) Nominal
mortgage does the customer have a mortgage (YES/NO) Nominal

did the customer buy a PEP (Personal Equity Plan) after the last [Nominal
pep mailing (YES/NO)
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Fig.1 Weka GUI Chooser
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Fig.2 bank-data.csv file
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4. IMPLEMENTATION STEPS

Fig.3 Weka Database Viewer and front panel

Since Apriori algorithm works with only nominal data, the data set is preprocessed. Save the
intermediate files after each step. The preprocessing WEKA is shown in Fig.4 and Fig.5. The
Fig.6 represents the pure data after preprocessing.

The following preprocessing methods are applied:
e Removing the attribute:
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o Remove the attribute id, since it uniquely identifies the tuples. It is done by

selecting the remove attribute filter.
o Remove the attribute location, since it does not play a vital role in generating the

rules.
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Fig.4 Preprocessing Weka
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Fig.5 Unwanted attribute removing in Preprocessing Weka
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Fig.6 After preprocessing
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Discretization: Association rule mining can be applied on categorical data, so the three numeric
attributes erected, length and lanes in the data set are discretized and it shown in Fig.7. The
Fig.8 represents the how to modify the normalized value for discretization.
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Fig.7 Discretization in customer datasets
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The attribute children has only the values 0, 1, 2 and 3, so it is discretized by just removing the
keyword numeric from the input file and replacing it with set of discrete values.

File Home View 0
v
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Paste B I Uaexx #-A- [E|=

Clipboard Font Paragraph Insert Editing
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@relation bank-data-weka.filters.unsupervised.attribute.Remove—
weka.filters.unsupervised.attribute . Remove—
weka.filters.unsupervised.attribute.Remove-R1

Battribute age numeric
@attribute sex {FEMALE,MALE}
Rattribute region {INNER_CITY, TCWN, RURATL, SUBURBAN}
@attribute income numeric
@attribute married {NO,YES}
Rattribute children numeric
@attribute car {NO,YES}
Battribute save_act [NO,YES]
@attribute current act {NO,YES}
@attribute mortgage {NO,YES}
@attribute pep {YES,NO}

Bdata

48, FEMALE, INNER_CITY, 17546,N0, 1, N0, NO, NO, NO, YES

40, MALE, TOWN, 30085.1, ¥ES, 3, YES, NO, YES, YES,NO

51, FEMALE, INNER_CITY, 16575.4, YES, 0, YES, YES, YES,NO, NO

23, FEMALE, TOWN, 20375. 4, YES, 3, NO,NO, YES, NO, NO

57, FEMALE, RURAL, 50576.3, YES, 0, NO, YES, NC, NO, NO

57, FEMALE, TOWN, 37869 . 6, YES, 2, NO, YES, YES, NO, YES

22, MALE, RURAL, 8877.07,N0, 0, N0, NO, YES, NO, YES

58, MALE, TOWN, 24946. 6, YES, 0, YES, YES, YES, NO,NO

37, FEMALE, SUBURBEN, 25304.. 3, YES, 2, YES,NO, NO, NO, NO

54, MALE, TOWN, 24212.1, YES, 2, YES, YES, YES, NO, NO

66, FEMALE, TCWN, 59803. 3, YES, 0, NO, YES, YES, NO, NO

52, FEMALE, INNER_CITY, 26658.8,N0, 0, YES, YES, YES, YES, NO

44, FEMALE, TOWN, 15735. 8, YES, 1, NO, YES, YES, YES, YES

66, FEMALE, TCWN, 55204 .7, YES, 1, YES, YES, YES, YES, YES

36, MALE, RURAL, 19474 .6, YES, 0, NO, YES, YES, YES, NO
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Fig.8 Labels assigned for the attributes and the changes in the instances.

The input file with the above changes is shown Fig.9
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@attribute age numeric

@attribute sex {FEMALE, MALE}
@attribute region {INNER_CITY, TCWN, RURATL, SUBURBAN}
@attribute income numeric
@attribute married {NO, YES}
eattribute children {0,1,2,3}
@attribute car {NO,YES}
@attribute save_act {[NO,YES}
@attribute current_act {NO,YES}
@Battribute mortgage {NO,YES}
@attribute pep {YES,NO}

@data
48, FEMALE, INNER_CITY, 1734¢,NO, 1,N0, NO, NO, NC, YES
40,MALE, TOWN, 30085.1, YES, 3, YES, NO, YES, YES,NC
51, FEMALE, INNER_CITY, 16575.4, ¥ES, 0, YES, YES, ¥YES,NO, NO
23, FEMALE, TOWN, 20375. 4, ¥ES, 3, NO,NO, ¥ES, NO, NO
57, FEMALE, RURAL, 50576 .3, YES, 0, NO, YES,NO, NO, NO
57, FEMALE, TOWN, 37865. 6, YES,2, N0, YES, YES, NO, YES
22,MALE, RURAL, 8877 .07,NO, 0,NC, NO, YES,NO, YES
58, MALE, TOWN, 24946 . €, YES, 0, YES, YES, YES, NG, NG
37, FEMALE, SUBURBAN, 25304 .3, YES, 2, YES,NO, NO, NG, NO
54, MALE, TOWN, 24212 .1, YES, 2, YES, YES, YES, NO, NG
66, FEMALE, TOWN, 55803 .9, YES, 0, NO, YES, YES, NG, NO
52, FEMALE, INNER_CITY, 26658 .8, NO, 0, YES, YES, YES, YES, NO
44, FEMALE, TOWN, 15735. 8, YES, 1, NO, YES, YES, YES, YES
22 66, FEMALE, TOWN, 55204 .7, YES, 1, YES, YES,YES, YES, YES
36, MALE, RURAL, 19474 . 6,YES, 0, NO, YES, YES, YES, NO
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Fig. 9 Automatic generated coding
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Fig.10 Attribute children details
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Fig.11 Attribute Age details
The other two attributes age and income have different (continuous) values for different
instances so it is discretized by applying discretize filter in the WEKA tool
The age and income ranges are divided into three categories (arbitrary) and the attributes are
discretized. Fig.12 and Fig.13 shows parameter modification in age and income attributes.
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Fig.12 Discretization in Age attributes
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Fig.13 Discretization in Income attributes
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The following Fig.14 depicts the labels assigned for the instances (one instance highlighted) of
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fattribute car {N0,YES}

fattribute save act [NO,YES)
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fattribute pep {YES,NC}

fdata

35 51, rewnte, Twer c1rv, 024386, o, 1, N0, K0, o, N, YE8
3551, MALE, TOWN, 24387 43758, ¥ES, 3, YES, NO, YES, YES, NO

52 max, FEMALF, INNER CITY, 0 24386, YES, 0, YES, YES, YES, N0, NO
0 34, PEMALE, TOWN, ) 24386, YES, 3, N0, NO, YES, O, NO

52 max, FEMALF, RURAL, 43759 nex, YES, 0, N0, YES, NO, 3O, NO
52_nax, FEMALF, TORN, 24347 43758, YE8, 2, NO, YES, YES, N0, YES
0_34, MALE, RURAL, 024386, N0, 0, N0, K0, YE8, NO, YE8

52_max, MALE, TOWN, 24387 43758, YES, 0, YES, YES, YES,NO, NO

35 51, FEMALE, SUBURBAN, 24387 43758, YES, 2, YES, NO, O, N0, NO
52 max,MALE, TOWN, ) 24346, YES, 2, YES, YES, YES, NO, O

52 max, FEMALE, TORN, 43753 max, YES, 0, NO, YES, YE8, 3O, NO

52 max, FEMALE, INNER CITY, 24387 43758,N0, 0, YES, YES, YES, YES, NO
35 51, FEMALE, TORN, 0 24386, YES, 1,0, YES, YES, YES, YES
52_nax, FEMALF, TORN, 43753 nax, YES, 1, YES, YES, YES, YES, YES
3551, MALE, RIRAL, 24386, YES, 0, N0, YES, YES, YES, NO

1 5 ®

27 the attributes age and income. Fig.15 shows the customer dataset after discretization. Fig.14
Labels assigned for the instances of the attributes age and income.
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(7] Weka Fxplorer -9
Preprocess | Classify | Cluster | Assodiate | Select attributes | Visualize
Open fle... Open URL.... Open DB... Generate.., Undo Edit... Save...
Filter
Choose | Discretize -E3 -M -1.0-R first-last Apply
Current relation Selected attribute
Relation: bank-data-weka.fiters.unsupervised.attribute. Remove-R 1-weka. fiters.unsupervised.attribute, Discretiza-B3-M-1.0-R 1-. . Name: age Type: Nominal
Instances: 600 Attributes: 11 Missing: O (0%) Distinct: 3 Unigue: 0 (0%)
BT M. Label Count
Al None Invert Pattern 1j0 34 155
2|35_51 214
52_max 191
1
2
3{[_Jregion
2 fncome elation: bank-data-weka. fiters.unsupervised. atfribute. Remove R 1-weka. fiters.unsupervised. attribute. Discretize B3M-1....
5[ TJmarried h age sex | region |income | married | children | car | save_act | current_act | mortgage | pep
& [chidren Nominal | Nominal | Nominzl | Nominal | Nominal | Nominal | Nominal | Hominal | Nominal | Wominal | Nominal
7 Tear 1 [3551 |FEMALE [INNER...|0_24386 |NO 1 NO NO NO MO VES A
3 :save act 3551 |MALE  [TOWM |24387... [YES 3 YES NO [YES VES O
g :cu"e;‘t act 3 [52_max [FEMALE [INWER...|0_24386 |YES o YES 'fES [YES MO O
10 imurtgage 4 [0_34  |FEMALE TOWN |0_24386|YES 3 NO NO [YES MO O
11 TJpen 5 [52_max [FEMALE RURAL |43753...|YES o NO ES NO NO NO v Visualze Al
6 [52_max [FEMALE TOWN |24387...|YES 2 NO ES YES NO YES
7 034 |MALE |RURAL |0_24386 |NO o NO NO YES NO YES
8 [52_max MALE |TOWN |24387..|YES 0 YES ES YES NO NO 4
9 [35.51 |FEMALE |SUBU... |24387...|YES 2 YES NO NO NO NO o1
10 [52_max [MALE |TOWN |0_24386 |YES 2 YES ES YES NO NO
11 [52_max [FEMALE TOWN |43753... |YES o NO YES YES NO NO
12 [52_max [FEMALE [INNER...|24387... |NO o YES YES YES YES NO
13 [3551 |FEMALE [TOWN |0_24386 |YES 1 NO YES YES YES YES
14 [52_max [FEMALE TOWM |43758...|YES 1 YES YES YES YES YES
15 (3551 |MALE RURAL |0_24386|YES 0 NO YES YES YES NO
16 (3551 |FEMALE [INNER...|0_24386 |YES 0 YES YES YES YES NO
17 |35.51 |[FEMALE [TOWN |0_24386 [YES 2 NO NO NO YES NO
18 (3551 |FEMALE |SUBU... |24387...|YES o NO YES N YES NO
19 [52_max [FEMALE [INNER...|24387... |YES o NO YES N MO YES
120 [0_34 |MALE |TOWM |0_24386 |YES o YES ES [YES MO NO
21 [52_max |MALE  [INMER...|43758... |YES 2 NO ES N MO VES
122 (3551 |MALE |TOWM |0_24386 |YES 2 NO ES [YES MO NO
Stats 123 [52_max |MALE  [INNER...|24387...|YES o NO ES YES MO NO
oK 24 |0_34  |FEMALE |TOWN |0_24386 |NO o YES ES YES \VES NO Log o
25 034 |MALE  |INNER...|0_24386 |NO 2 YES ES YES MO NO ‘

Fig.15 Customer Dataset after discretization

Apriori Algorithm Implementation in Weka:

The preprocessed data file is used for Association rule mining (Apriori Algorithm) and
the following rules are generated by setting the necessary measures such as support and
confidence is shown in Fig.16 and Fig.17.

Mo
|, weka € 1.0
= ., RGeS
B RN =l'h.l=b.!I
* Sheedimocatr
i ]
.
# Semnosamer
# T=hs

Fig.16 Apriori Algorithm Implementation in Weka
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Preprocessl Clsify | Cluste«| Azacate | Selct atrbutes | WMaI\ze|

Assaciator
| Chocse ||ﬁpriuri-NIU-TU-CDB-DU.US-Ul.U-MU.l-S-I‘U-c-l

Assodiator oufput

Resutist fight-<ick.,, | Apriord

01:31:10 - Apriori z=z====

Minimm support: 0.1 (60 inatances)
Minimm metric <confidencey: 0.9
Nurber of cycles performed: 18

Generated sets of large itemsets:

Size of set of large itemsets L{l): 28
Size of set of large itemsets L{2): 232
Size of set of large itemsets L{3): 54
Size of set of large itemsets L{4): 277
Size of set of large itemsets L(3): 33
Best rules found:

. income=43739 max 80 ==y save act={E3 80  canf:(l)

. 808=02 M income=43739 max 76 => save_act=YES 76 confi(l)

. income=43759 max current act=1E3 €3 ==» save act=VES 63  conf:(l)

. 808=52 M incore=43759 max current act=iE3 61 ==» save act=VES 61  conf:(l)

. children=0 save act=YES mortgage=i0 pep=N0 74 == married=fE3 73  conf:(0.99)

. sex=FEMALE children=0 mortgage=N0 pep=N0 64 ==> married=YES €3  conf: (0.%)

. children=0 current act=VE3 mortgage=N0 pep=N0 82 =» married=YES 80  conf:(0.%8)
. children=0 mortgage=N0 pep=N0 107 => married={ES 104  conf: (0.97)

. Income=43739 max current act=YES 63 ==) age=0Z max 81 conf:(0.97)

0. income=43733 max sgve act=YE3 current act=YE3 63 = age=52 max 61 conf:(0.97)

—

Status

% ‘xo

Support and Confidence threshold:
The following Fig.17 shows the parameters set

29
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o

Preprocess | Classify | Cluster | Associate | Select attributes | Visualize
Associator
Choose  Apriori-N 10-T0-C09-D0.0S-UL.0-MO1-5-1.0-c-1

Associator output
Start Stop UL

Resuit st (fight-ciick for options)

weka. assodiations. Apriori
About

Class implementing an Apriori-type algorithm. More

Capabiliies

car | False v
dassIndex -1
delta  0.05
lowerBoundMinsupport 0.1
metricType | Confidence v
minMetric 0.9
numRules |10
outputitemSets | False v
removeAlMissingCols | False v
significancelevel |-1.0
upperBoundMinSupport | 1.0

verbose | False ~

Open... Save... oK Cancel

Status

oK Log “;xn

Fig. 17. Minimum Support and Confidence threshold

Output-Rules Generated:
The screen shot shows the rules generated by applying Apriori Algorithm for association

rule mining is shown in Fig.18.
== Run information ===
Scheme:  weka.associations.Apriori -N 10 -T 0-C 0.9 -D 0.05-U 1.0-M 0.1 -S-1.0 -c -1
Relation: bank-data-weka.filters.unsupervised.attribute.Remove-R 1-
weka.filters.unsupervised.attribute.Discretize-B3-M-1.0-R1-
weka.filters.unsupervised.attribute.Discretize-B3-M-1.0-R4
Instances: 600
Attributes: 11

age

sex

region

income

married

children

car

save act

current_act

mortgage

pep
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4]

‘ Preprocess | Classify | Cluster ‘ Assodiate ‘ Select attributes | \ﬁsuahze‘

Assodiator

| Choose | Apriori H10-T0-C08-DOI5-UL0-H01 5101

Assodiator output
=

Resultlist (right-dick... ~ | Apriori

01:31:10 - Apriori

Minimum support: 0.1 (60 instances)
Minimum metric <confidencer: 0.9
Number of cycles performed: 18

Generated sets of large itemsets:

Size of set of large itemsets L{l): 28
Size of set of large itemsets L{2): 232
Size of set of large itemsets L{3): 524
Size of set of large itemsets L{4): 277
Size of set of large itemsets L{5): 33
Best rules found:

« income=43759 max 80 ==» save act=YES 80  coni:(l)

. age=52_max income=43739 max 76 ==» save_act=YE3 76  confi(l)

. income=43759 max current act=YE3 63 ==» save_act=YES 63  conf: (1)

. 2ge=52_max income=43739 max current act=YE3 &1 ==> save_act=¥E3 61  conf:(l)

. children=0 save act=YES mortgage=NO pep=N0 74 ==> married=YES 73 cenf: (0.99)

. 3ex=FEMATF children=0 mortgage=NO pep=NO 64 ==> married=YES &3 conf: (0.98)

. children=0 current_act=YES mortgage=N0 pep=N0 82 ==» married=¥ES 80  conf:(0.98)
. children=0 mortgage=N0 pep=N0 107 ==> married=YES 104 conf: (0.97)

. income=43759_max current_act=YES 63 ==> age=52 max 61  conf:(0.97)

10. income=43759_max save_act=YES current_act=YES €3 ==> age=52 max &1  conf:(0.97)

Wwom s e ot owe o P

=

x &
Fig.18. Output rule generated
=== Associator model (full training set) ===
Apriori

Minimum support: 0.1 (60 instances)
Minimum metric <confidence>: 0.9
Number of cycles performed: 18
Generated sets of large itemsets:

Size of set of large itemsets L(1): 28
Size of set of large itemsets L(2): 232
Size of set of large itemsets L(3): 524
Size of set of large itemsets L(4): 277
Size of set of large itemsets L(5): 33
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Best rules found:

1
2
3
4
5.
6
7
8
9

10.

. income=43759 max 80 ==> save act=YES 80 conf:(1)

. age=52 max income=43759 max 76 ==> save act=YES 76 conf:(1)

. income=43759 max current act=YES 63 ==> save act=YES 63 conf:(])

. age=52 max income=43759 max current act=YES 61 ==>save act=YES 61 conf:(1)

children=0 save act=YES mortgage=NO pep=NO 74 ==> married=YES 73 conf:(0.99)

. sex=FEMALE children=0 mortgage=NO pep=NO 64 ==> married=YES 63 conf:(0.98)
. children=0 current act=YES mortgage=NO pep=NO 82 ==> married=YES 80 conf:(0.98)
. children=0 mortgage=NO pep=NO 107 ==> married=YES 104 conf:(0.97)

income=43759 max current act=YES 63 ==> age=52 max 61 conf:(0.97)
income=43759 max save act=YES current act=YES 63 ==> age=52 max 61 conf:(0.97)

CONCLUSION:

The above rules infer that most of the customers whose age is above 52 and income

greater than 43,000 have a saving account and current account. Most of the customers who has

no

children, no mortgage and no personal equity plan is married.
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