
International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN: 2456-172X | Vol. 1, Issue. 3, September - November, 2016 | Pages 90-96

www.irjges.com | M. Revathi et. al. Page 90

DEPLOYING SMART CONTRACT IN

ETHEREUM NETWORK AS

DECENTRALIZED APPLICATION

M. Revathi1, S.Jayanthi2

Assistant Professor, Department of CSE, Agni College of Technology, Chennai.

Abstract: This Project evolve around Ethereum, an open Blockchain platform which enables usage of

Decentralized Application(DApp). We have created a DApp for a Car Rental Agency as a Smart contract

and deployed it in the Ethereum test network. Every Online Application involves a centralized server for

processing user request. Only a single server is responsible for managing data and processing user’s

request. Every user forms a distributed network with every other user. Every transaction is called as a block

and all the blocks are maintained by all users. Solidity is the language used for contracts.

I. INTRODUCTION

Ethereum is an open blockchain platform that lets anyone build and use decentralized

applications that run on blockchain technology. No one controls or owns Ethereum – it is an

open-source project built by many people around the world. Ethereum was designed to be

adaptable and flexible. Blockchain technology is the technological basis of Bitcoin. A

blockchain is a distributed computing architecture where every network node executes and

records the same transactions, which are grouped into blocks. Only one block can be added at a

time, and every block contains a mathematical proof that verifies that it follows in sequence from

the previous block. In this way, the blockchain’s “distributed database” is kept in consensus

across the whole network. Individual user interactions with the ledger (transactions) are secured

by strong cryptography.

Like any blockchain, Ethereum also includes a peer-to-peer network protocol. The

Ethereum blockchain database is maintained and updated by many nodes connected to the

network. Each node of the network runs the EVM and executes the same instructions. For this

reason, Ethereum is sometimes described evocatively as a “world computer”. Specifically,

ethereum is suited for applications that automate direct interaction between peers or facilitate

http://www.irjges.com/

International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN: 2456-172X | Vol. 1, Issue. 3, September - November, 2016 | Pages 90-96

www.irjges.com | M. Revathi et. al. Page 91

coordinated group action across a network. All action on the Ethereum blockchain is set in

motion by transactions fired. Every time a contract account receives a transaction, its code is

executed as instructed by the input parameters sent as part of the transaction. The contract code

is executed by the Ethereum Virtual Machine on each node participating in the network as part of

their verification of new blocks.

The term “transaction” is used in Ethereum to refer to the signed data package that stores

a message to be sent from an externally owned account to another account on the blockchain

.Transactions contain the recipient of the message, a signature identifying the sender and proving

their intention to send the message via the blockchain to the recipient, value field - The amount

of wei to transfer from the sender to the recipient, an optional data field, which can contain the

message sent to a contract, a start gas value, representing the maximum number of computational

steps the transaction execution is allowed to take, a gas price value, representing the fee the

sender is willing to pay for gas. One unit of gas corresponds to the execution of one atomic

instruction, i.e., a computational step.

Smart contracts are code functions and can interact with other contracts, make decisions,

store data, and send ether to others. Contracts are defined by their creators, but their execution,

and by extension the services they offer, is provided by the ethereum network itself. Contracts

can send “messages” to other contracts. Messages are virtual objects that are never serialized and

exist only in the Ethereum execution environment. They can be conceived of as function calls. A

message contains the sender of the message (implicit), the recipient of the message, value field -

The amount of wei to transfer alongside the message to the contract address, an optional data

field, that is the actual input data to the contract, a start gas value, which limits the maximum

amount of gas the code execution triggered by the message can incur. The fact that contract

executions are redundantly replicated across nodes, naturally makes them expensive, which

generally creates an incentive not to use the blockchain for computation that can be done off

chain.

When you are running a decentralized application (DApp), it interacts with the

blockchain to read and modify its state, but DApp will typically only put the business logic and

state that are crucial for consensus on the blockchain. When a contract is executed because of

being triggered by a message or transaction, every instruction is executed on every node of the

network. This has a cost: for every executed operation, there is a specified cost, expressed in

http://www.irjges.com/

International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN: 2456-172X | Vol. 1, Issue. 3, September - November, 2016 | Pages 90-96

www.irjges.com | M. Revathi et. al. Page 92

several gas units. Gas is the name for the execution fee that senders of transactions need to pay

for every operation made on an Ethereum blockchain. The name gas is inspired by the view that

this fee acts as crypto fuel, driving the motion of smart contracts. Gas is purchased for ether from

the miners that execute the code. Contracts generally serve four purposes Maintain a data store

representing something which is useful to either other contracts or to the outside world, Serve as

a sort of externally-owned account with a more complicated access policy; this is called a

“forwarding contract” and typically involves simply resending incoming messages to some

desired destination only if certain conditions are met, Manage an ongoing contract or relationship

between multiple users, Provide functions to other contracts, essentially serving as a software

library.

 Solidity is a contract-oriented, high-level language whose syntax is similar to that

of JavaScript and it is designed to target the Ethereum Virtual Machine. Solidity is statically

typed, supports inheritance, libraries and complex user-defined types among other features.

II .EXISTING SYSTEM

Centralized computing is computing done at a central location, using terminals that are

attached to a central computer. The computer itself may control all the peripheral directly (if they

are physically connected to the central computer), or they may be attached via a terminal.

Alternatively, if the terminals have the capability, they may be able to connect to the central

computer over the network. The terminals may be text terminals or thin clients for example.

This type of arrangement does have some disadvantages. The central computer performs

the computing functions and controls the remote terminals. This type of system relies totally on

the central computer. Should the central computer crash, the entire system will "go down" (i.e.

will be unavailable).

Another disadvantage is that central computing relies heavily on the quality of

administration and resources provided to its users. Should the central computer be inadequately

supported by any means (e.g. size of home directories, problems regarding administration), then

your usage will suffer greatly. The reverse situation, however, (i.e., a system supported better

than your needs) is one of the key advantages to centralized computing.

The client–server model is a distributed application structure that partitions tasks or

http://www.irjges.com/

International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN: 2456-172X | Vol. 1, Issue. 3, September - November, 2016 | Pages 90-96

www.irjges.com | M. Revathi et. al. Page 93

workloads between the providers of a resource or service, called servers, and service requesters,

called clients. Often clients and servers communicate over a computer network on separate

hardware, but both client and server may reside in the same system. A server host runs one or

more server programs which share their resources with clients. A client does not share any of its

resources, but requests a server's content or service function. Clients therefore initiate

communication sessions with servers which await incoming requests. Examples of computer

applications that use the client–server model are Email, network printing, and the World Wide

Web.

Example:

When a bank customer accesses online banking services with a web browser (the client), the

client initiates a request to the bank's web server. The customer's login credentials may be stored

in a database, and the web server accesses the database server as a client. An application server

interprets the returned data by applying the bank's business logic, and provides the output to the

web server. Finally, the web server returns the result to the client web browser for display.

In each step of this sequence of client–server message exchanges, a computer processes a

request an returns data. This is the request-response messaging pattern. When all the requests are

met, the sequence is complete and the web browser presents the data to the customer.

III.PROPOSED SYSTEM

A distributed system is a model in which components located on networked computers

communicate and coordinate their actions by passing messages. The components interact with

each other in order to achieve a common goal. Three significant characteristics of distributed

systems are: concurrency of components, lack of a global clock, and independent failure of

components. Examples of distributed systems vary from SOA-based systems to massively

multiplayer online games to peer-to-peer applications.

Decentralized autonomous organizations have been seen by some as difficult to describe.

Nevertheless, the conceptual essence of a decentralized autonomous organization has been

typified as the ability of blockchain technology to provide a secure digital ledger that tracks

financial interactions across the internet, hardened against forgery by trusted time stamping and

by dissemination of a distributed database. This approach eliminates the need to involve a

http://www.irjges.com/

International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN: 2456-172X | Vol. 1, Issue. 3, September - November, 2016 | Pages 90-96

www.irjges.com | M. Revathi et. al. Page 94

bilaterally accepted trusted third party in a financial transaction, thus simplifying the sequence.

The costs of a blockchain enabled transaction and of making available the associated data may

be substantially lessened by the elimination of both the trusted third party and of the need for

repetitious recording of contract exchanges in different records: for example, the blockchain data

could in principle, if regulatory structures permitted, replace public documents such as deeds and

titles. In theory, a blockchain approach allows multiple cloud computing users to enter a loosely

coupled peer-to-peer smart contract collaboration.

Blockchain is a distributed database that maintains a continuously growing list of ordered

records called blocks. Each block contains a timestamp and a link to a previous block.

Blockchains are "an open, distributed ledger that can record transactions between two parties

efficiently and in a verifiable and permanent way. The ledger itself can also be programmed to

trigger transactions automatically.

A Decentralized Application (or 'DApp') is a piece of software consisting of a user

interface (UI) and a decentralized backend; typically making use of a blockchain and smart

contracts. Most of the projects listed on this page were built using Ethereum - a popular

development platform for creating DApp.

IV.CONCLUSION

The Ethereum protocol was originally conceived as an upgraded version of a

cryptocurrency, providing advanced features such as on-blockchain escrow, withdrawal limits,

financial contracts, gambling markets and the like via a highly generalized programming

language. The Ethereum protocol would not "support" any of the applications directly, but the

existence of a Turing-complete programming language means that arbitrary contracts can

theoretically be created for any transaction type or application. What is more interesting about

Ethereum, however, is that the Ethereum protocol moves far beyond just currency. Protocols

around decentralized file storage, decentralized computation and decentralized prediction

markets, among dozens of other such concepts, have the potential to substantially increase the

efficiency of the computational industry, and provide a massive boost to other peer-to-peer

protocols by adding for the first time an economic layer. Finally, there is also a substantial array

http://www.irjges.com/

International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN: 2456-172X | Vol. 1, Issue. 3, September - November, 2016 | Pages 90-96

www.irjges.com | M. Revathi et. al. Page 95

of applications that have nothing to do with money at all.

The concept of an arbitrary state transition function as implemented by the Ethereum

protocol provides for a platform with unique potential; rather than being a closed-ended, single-

purpose protocol intended for a specific array of applications in data storage, gambling or

finance, Ethereum is open-ended by design, and we believe that it is extremely well-suited to

serving as a foundational layer for a very large number of both financial and non-financial

protocols in the years to come.

References:

[1]. M. Carli, M. Farais, E. D. Gelasca, R. Tedesco, and A. Neri, “Quality assessment using data

hiding on perceptually important areas,” in Proc. IEEE Int. Conf. Image Processing, ICIP, Sep.

2005, pp. III-1200-3–III-1200-3.

[2]. A. Yilmaz and A. Aydin, “Error detection and concealment for video transmission using

information hiding,” Signal Processing: Image Communication, vol. 23, no. 4, pp. 298–312, Apr.

2008.

[3]. S. Kapotas and A. Skodras, “A new data hiding scheme for scene change detection in H.264

encoded video sequences,” in Proc. IEEE Int. Conf. Multimedia Expo ICME, Jun. 2008, pp.

277–280.

[4]. K. Nakajima, K. Tanaka, T. Matsuoka, and Y. Nakajima, “Rewritable data embedding on

MPEG coded data domain,” in Proc. IEEE Int. Conf. Multimedia and Expo, ICME, Jul. 2005,

pp. 682685.

[5]. Y. Li, H.-X. Chen, and Y. Zhao, “A new method of data hiding based on H.264 encoded

video sequences,” in Proc. IEEE Int. Conf. Signal Processing, ICSP, Oct. 2010, pp. 1833–1836.

[6]. D.-Y. Fang and L.-W.Chang, “Data hiding for digital video with phase of motion vector,” in

Proc. IEEE Int. Symp. Circuits Systems, ISCAS, Sep. 2006.

[7]. C. Xu, X. Ping, and T. Zhang, “Steganography in compressed video stream,” in Proc. Int.

Conf. Innovative Computing, Information and Control, ICICIC‟06, 2006, vol. II, pp. 803–806.

[8]. K. Wong, K. Tanaka, K. Takagi, and Y.Nakajima, “Complete video quality-preserving data

hiding,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 10, Oct. 2009.

[9]. K. Solanki, U. Madhow, B. S. Manjunath, S. Chandrasekaran, and I. El-Khalil, “‟Print and

Scan‟ resilient data hiding in images,” IEEE Trans. Inform. Forensics Security, vol. 1, no. 4, pp.

464–478, Dec.2006.

[10]. X.-P. Zhang, K. Li, and X. Wang, “A novel look-up table design method for data hiding

with reduced distortion,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 6, pp. 769–776,

Jun. 2008.

[11] W. J. Lu, A. Varna, and M. Wu, “Secure video processing: Problems and challenges,” in

Proc. IEEE Int. Conf. Acoust.,Speech, Signal Processing,Prague, Czech Republic, May 2011, pp.

5856–5859.

[12] B. Zhao, W. D. Kou, and H. Li, “Effective watermarking scheme in the encrypted domain

for buyer-seller watermarking protocol,” Inf. Sci.,vol. 180, no. 23, pp. 4672–4684, 2010.

http://www.irjges.com/

International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN: 2456-172X | Vol. 1, Issue. 3, September - November, 2016 | Pages 90-96

www.irjges.com | M. Revathi et. al. Page 96

[13] P. J. Zheng and J. W. Huang, “Walsh-Hadamard transform in the homomorphic encrypted

domain and its application in image watermarking,”in Proc. 14th Inf. Hiding Conf., Berkeley,

CA,USA, 2012, pp. 115.

[14] W. Puech, M. Chaumont, and O. Strauss, “A reversible data

hiding method for encrypted images,” Proc. SPIE, vol. 6819,pp. 68191E-1–68191E-9, Jan. 2008.

[15]. X. P. Zhang, “Reversible data hiding in encrypted image,” IEEE Signal Process. Lett.,

vol.18, no. 4, pp. 255–258, Apr. 2011.

[16]. W. Hong, T. S. Chen, and H. Y. Wu, “An improved reversible data hiding in encrypted

images using side match,” IEEE Signal Process.Lett., vol.19,no. 4, pp. 199–202, Apr. 2012.

[17] .X. P. Zhang, “Separable reversible data hiding in encrypted

image,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 2,pp. 826–832, Apr. 2012.

[18] . K. D. Ma, W. M. Zhang, X. F. Zhao, N. Yu, and F. Li, “Reversible data

hiding in encrypted images by reserving room before encryption,” IEEE

Trans. Inf. Forensics Security, vol. 8, no. 3, pp. 553–562, Mar. 2013.

http://www.irjges.com/

