
International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN : 2456-172X | Vol. 1, No. 4, January, 2017 | Pages 19-26

IRJGES | Vol. 1 (4) January 2017 | www.irjges.com | Geetanjali Rave Page 19

Software Engineering – A Conceptual Study

on Software Development Life Cycle
Geetanjali Rave
Software Engineer, Accenture Services Pvt. Ltd, Bangalore, Karnataka

Abstract: With the growing market trends, success or failure abides a direct correlation

towards impetus to change in the environment caused by the various surrounding bodies. A

change to the existing operation is vital as its imperative for the practitioners to revisit their

IT strategies and to seek business solutions that accommodate requirements pertaining to

complexity, scalability, service and delivery, all at once. Impetus to change, Requirement

gathering, Feasibility study, System Analysis, Strategy, Enactment, Verification, Validation,

Post Validation and Disposition is flow the SDLC is outlined. Imbibing the requirement for

the spur to change the existing model a step-by-step, spiral, V, Iterative and Incremental

Method or Evolutionary prototyping method is used. Each method has its own pros and cons.

Ever increasing need to shift to a framework where Business, Analytics, Technology and

Operations world break the silos and become intertwined in a manner that allows business

solutions to be synthesized. SDLC would thus no longer be a series of isolated phases, but

encompass the entire mechanism of transforming a business problem to an executable

solution.

Keywords – Software Development Cycle; Development Models

1.0 Introduction

Software Development Life Cycle is a methodical approach and precise, practiced for the

improvement of a steadfast high quality software system. This paper deals with few of those

SDLC models, namely; Waterfall model, Iterative model, Spiral model and Win-Win spiral

model. Each development model has certain advantages and disadvantages. Software

Maintainability must be given adequate focus during software development process to diminish

the interruption. Instilling the maintainability features in the software application during its

development can minimize the maintainability efforts during its real time use. This paper

presents a new, Software Development Life Cycle model (SDLC) introducing maintainability

development tasks or activities to be followed during the SDLC. Therefore, the main objective

of this paper is to represent different models of software development and make a comparison

between them to show the features and defects of each model.

International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN : 2456-172X | Vol. 1, No. 4, January, 2017 | Pages 19-26

IRJGES | Vol. 1 (4) January 2017 | www.irjges.com | Geetanjali Rave Page 20

Image 1 – Software Development Life Cycle

2.0 Outline & Conceptual Summary

2.1 Software Process Models

SDLC model is an intangible representation of a procedure. It presents a description of a

process from some particular perspective as:

1. Specification.

2. Design.

3. Validation.

4. Evolution.

General Software Process Models are:

1. Waterfall model.

2. Iterative model.

3. Spiral model.

4. Win-Win spiral model.

Many amendments of these models have been developed in the recent past e.g. Ceremonial

development is the platform for waterfall-like process use but the specification is prescribed that

is refined through several stages to an implementable design.

International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN : 2456-172X | Vol. 1, No. 4, January, 2017 | Pages 19-26

IRJGES | Vol. 1 (4) January 2017 | www.irjges.com | Geetanjali Rave Page 21

2.2 Waterfall model

The waterfall model is the orthodox model of software engineering. This model is one of the

oldest models which is extensively used in many major companies. Because this model stresses

on planning in premature stage. It ensures design blemishes before they could be developed. In

addition, its concentrated document and planning makes it work well for projects in which

quality control is a key. This model is used only when the requirements are flawless and

permanent. Definition of the product is perfect in this model before the development would

commence. The requirement is not vague. Generous resources with required expertise are

available freely. Waterfall model helps the project to be short, precise and crisp.

The Waterfall Model is the oldest and most well-known SDLC model. The distinctive feature of

the Waterfall model is its sequential step-by-step process from requirements analysis to

maintenance. The major weakness of the Waterfall Model is that after project requirements are

gathered in the first phase, there is no formal way to make changes to the project as

requirements change or more information becomes available to the project team. Because

requirements almost always change during long development cycles, often the product that is

implemented at the end of the process is obsolete as it goes into production. The Waterfall

Model is a poor choice for software development projects where requirements are not well-

known or understood by the development team. It might not a good model for complex projects

or projects that take more than a few months to complete.

Think about doing a home improvement project (such as new hardwood floors) for the first time

and only being allowed to go the hardware store one time. The risk the project will fail is high.

What are good candidate software development projects for the Waterfall Model? Systems that

have well-defined and understood requirements are a good fit for the Waterfall Model. For

instance, a military system aiming an artillery shell is a system with a single, simple

requirement; put the shell on the target. This also assumes that the developers have worked on

similar systems in the past and are experts in the application domain (artillery fire control

systems). To follow the home improvement example, after a visit to a home to get

specifications, an experience flooring contractor could install new hardwood floors with only

one trip to the hardware store. In this case, the risk of project failure is low.

A smaller amount of customer’s action is involved during the development of the product. The

end product completion only can be moved to the user / customer. The product developed with

any failure occurrence then the cost of fixing such issues are very high, because we need to

update from the apex everywhere from document till the logic.

International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN : 2456-172X | Vol. 1, No. 4, January, 2017 | Pages 19-26

IRJGES | Vol. 1 (4) January 2017 | www.irjges.com | Geetanjali Rave Page 22

Image 2 – Water fall model diagram

2.3 Iterative model

The glitches with the Waterfall Model formed a demand for a new method of developing

systems that could provide quicker results and require less straightforward information with

mainly flexibility. In this model the project is divided into smaller modules, which allows the

development team to validate results earlier, which helps to obtain valuable feedback from

users/ customers. Widely, iteration consists of a small module -Waterfall process with the

feedback from one phase providing dynamic information for the design of the succeeding phase.

In a variation of this model, the software products, which are produced at the end of each step,

can go into production immediately as incremental releases. Hence, Iterative model provides a

results often for users to give feedback which in turn is an input for further development.

Image 3 – Iterative model diagram

International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN : 2456-172X | Vol. 1, No. 4, January, 2017 | Pages 19-26

IRJGES | Vol. 1 (4) January 2017 | www.irjges.com | Geetanjali Rave Page 23

2.4. Spiral Model

Analyzing the Risk needs distinction therefore, a model similar to Incremental model was

developed - ‘Spiral model’. The 4 stages that the model contains are Planning, Risk Analysis,

Engineering and Evaluation. This model is similar to a spider web. The 4 stages consist of sub

stages based on the baseline spiral. A software project repeatedly passes through these phases in

iterations. In the planning phase the need for the requirement are assembled and the risk is

weighed. Each succeeding spiral builds on the baseline spiral. Requirements are gathered during

the planning phase. A process is undertaken to identify risk and alternate solutions which

defines the purpose of the model. A pattern is produced at the end of the risk analysis phase.

Software is produced in the engineering phase, along with testing at the end of the phase. The

evaluation phase allows the customer to evaluate the output of the project to date before the

project continues to the next spiral. In the spiral model, the angular component represents

progress, and the radius of the spiral represents cost. This model is suited for large and mission-

critical projects. Software is produced early in the software life cycle. On the contrary this

model’s Risk analysis requires highly specific expertise because project’s success is highly

dependent on the risk analysis phase. This doesn’t work well for smaller projects.

Image 4 – Spiral model diagram

International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN : 2456-172X | Vol. 1, No. 4, January, 2017 | Pages 19-26

IRJGES | Vol. 1 (4) January 2017 | www.irjges.com | Geetanjali Rave Page 24

2.5 Win-Win spiral model

The main difficulty in applying the spiral model has been the privation of explicit process

guidance in determining these objectives, constraints, and alternatives. The Win-Win Spiral

Model [Boehm 94] uses the theory W (win-win) approach to congregate on a system's next-

level objectives, constraints, and alternatives. This Theory W approach involves identifying the

system's stakeholders and their win conditions, and using negotiation processes to determine a

mutually satisfactory set of objectives, constraints, and alternatives for the stakeholders. In

particular, as illustrated in the figure, the nine-step Theory W process translates into the

following spiral model Extensions:

1. Determine Objectives: Identify the system life-cycle stakeholders and their win conditions

and establish initial system boundaries and external interfaces.

 2. Determine Constraints: Determine the conditions under which the system would produce

win-lose or lose-lose outcomes for some stakeholders.

3. Identify and Evaluate Alternatives: Solicit suggestions from stakeholders, evaluate them with

respect to stakeholders' win conditions, synthesize and negotiate candidate win-win alternatives,

analyses, assess, resolve win-lose or lose-lose risks, record commitments and areas to be left

flexible in the project's design record and life cycle plans.

4. Cycle through the Spiral: Elaborate the win conditions evaluate and screen alternatives,

resolve risks, accumulate appropriate commitments, and develop and execute downstream

plans.

Image 5 – Win-Win Spiral model diagram

International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN : 2456-172X | Vol. 1, No. 4, January, 2017 | Pages 19-26

IRJGES | Vol. 1 (4) January 2017 | www.irjges.com | Geetanjali Rave Page 25

3.0 Objective

3.1 Model Selection

This paper did mention many models and their advantages and disadvantages. The question

that now arises is, "Which model should I choose?" Note that we should choose the right type

of the Model to implement based on the scope of the software project. This depends on a

number of factors, some of which are given below.

· The Scope of the Project

· The Project Budget

· The organizational environment

· Available Resources

4.0 Conceptual Summary

Software Development Life Cycle (SDLC) is the process of developing information systems

through analysis, planning, design, implementation, integration maintenance and testing of

software applications. SDLC is also known as information systems development or application

development. The development of quality software involves the usage of a structured approach

towards the design and development of the end product. In a nutshell, the success of the SDLC

process for building a successful software system rests on the following:

· Scope Restriction

· Progressive Enhancement

· Pre-defined Structure

· Incremental Planning at each of the stages

4.1 Societal Development

If each of these steps can be followed in its entirety, most of the risks that evolve in the software

development life cycle can be mitigated. This article has provided a comprehensive explanation

of the important and widely used Software Development Life Cycle (SDLC) phases and its

models. It has also provided the advantages and disadvantages of each of these models.

5.0 Suggestions

To enhance the skills on improvising the knowledge of SDLC - suggesting a model to simulate

advantages that are found in different models to software process management. Making a

comparison between the suggested model and the previous software processes management

International Research Journal in Global Engineering and Sciences. (IRJGES)

ISSN : 2456-172X | Vol. 1, No. 4, January, 2017 | Pages 19-26

IRJGES | Vol. 1 (4) January 2017 | www.irjges.com | Geetanjali Rave Page 26

models. Applying the suggested model to many projects to ensure of its suitability and

documentation to explain its mechanical work

6.0. Conclusion

After completing this research, it is concluded that there are various existing models for

developing systems for different scopes of projects and requirements. Waterfall model and

spiral model are used universally & frequently in developing systems. Each model has

advantages and disadvantages for the development of systems, so each model tries to eliminate

the disadvantages of the previous model

References

[1] Software Engineering (9th Edition) 9th Edition by Ian Sommerville

[2] Software Engineering: A Practitioner's Approach, 7th International edition 7th Edition

by Roger Pressman

[3]Software Engineering Best Practices: Lessons from Successful Projects in the Top

Companies by Capers Jones

https://www.amazon.com/Ian-Sommerville/e/B000APC1KW/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Roger+Pressman&search-alias=books&field-author=Roger+Pressman&sort=relevancerank
https://www.amazon.com/Capers-Jones/e/B000APTHHW/ref=dp_byline_cont_book_1

