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Abstract 

Optimal transformer design (TD) is a complex multi-modal, multi-objective, mixed-variable 

and non-linear problem. This paper discusses the application of Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES) for distribution TD, minimizing four objectives; purchase cost, 

total life-time cost, total mass and total loss individually. Two independent variables; voltage 

per turn and type of magnetic material are proposed to append with the usual TD variables, 

aiming at cost effective, reduced weight, and energy efficient TD. Three case studies with three 

sets of TD vectors are implemented on 400 KVA, 20/0.4 KV transformer to demonstrate the 

superiority of Modified Design Variables (MDV), in terms of cost savings, material savings, 

and loss reduction. Simulation results of CMA-ES provide better TD on comparison with 

conventional transformer design procedure, branch and bound algorithm tailored to a mixed-

integer non-linear programming, Self Adaptive Differential Evolution (SaDE), and real coded 

GA (RGA). Statitical analysis has proven the faster convergence and consistency of CMA-ES. 

Moreover, NSGA-II is applied for solving multi-objective TD optimization problem with the 

aim of providing tradeoff between conflicting TD objectives. 

Introduction 

All power utilities are much worried about the high failure rate of distribution transformers. 

Transformers can be expected to operate 20–30 years. But losses in the form of heat reduce the 

transformer life by causing damage to the insulation. Finding ways to decrease the losses of the 

transformer is an important factor in reducing transformer failure rate, costs, and CO2 

emissions. Total lifetime cost (TLTC) is the total life cycle cost which considers the future 

operating costs of a unit over its lifetime, brought back into present-day cost and then added to 

its total purchase price. A transformer with low TLTC is expected to have low losses and a 

longer life. Selecting energy-efficient distribution transformers ‘SEEDT’ project also concluded 

that electricity distribution companies and commercial and industrial users should use the TLTC 

method for making transformer purchasing decisions. Energy-efficient transformers are more 

expensive, but use less energy, resulting in lesser TLTC [1]. So designing a transformer based 

on purchase cost, without considering the future losses is therefore not the right decision. TD 

based on minimizing TLTC alone can drop off the transformer failure rate by reducing losses, 

amount of power generation needed to accommodate the losses, operating cost, emission of 

greenhouse gases and environmental cost, among the other TD objectives.  
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But this TLTC minimization objective is rarely attended in most of the kinds of literature. From 

the overview of research papers in TD, efforts are focusing on the prediction of specific 

transformer characteristics, techniques adopted for transformer design optimization, transformer 

post design performance and modeling and recent trends on transformer technology. In a 

nutshell, TD optimization problem remains an active area [1]. TD optimization can be the 

minimization of no-load loss [2,3], minimization of load loss [4], maximization of efficiency 

[5–8], maximization of rated power [9], minimization of mass [9] or minimization of cost 

[5,6,10–19], based on the objective functions. A comparison of non-linear programming 

techniques for the optimum design of transformers was presented in [20]. Optimization is done 

by geometric programming for the minimization of the total mass of the transformer, [9] 
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provided a solution for low and high-frequency transformers. But this method finds difficulty in 

combination with the cost estimation algorithm and requires a mathematical model. 

Mixed integer programming (MIP) in combination with finite element method (FEM) [10], MIP 

in combination with branch bound algorithm (BBA) [11], bacterial foraging algorithm (BFA) 

[5] and simulated annealing technique [12] have been adopted for the minimization of main 

material cost (CTM) of transformer, without considering the transformer losses. However, all 

these methods have got their own drawbacks. MIP-FEM is sensitive to the selection of the value 

range of design variables and fails to find the global optimum. MIP-BBA is time-consuming 

since the number of nodes in a branching tree is too large. The drawbacks of the simulated 

annealing technique are finding difficulty in extending itself to the multi-objective case and 

long searching time to find the optimum. When the search space and complexity grow 

exponentially in scalable problems, basic BFA would not be suitable. Hybrid FEM with 

boundary element method (BEM) [21], trial and error based heuristic approach [13] have been 

implemented for the minimization of transformer manufacturing cost (MC), which is the mere 

sum of CTM and labor cost, excluding the operational cost. 

BBA tailored to mixed-integer non-linear programming (MINLP) [15], numerical field analysis 

technique in combination with BEM [19] and multiple algorithm based hybrid approach [23] 

have addressed the minimization of TLTC of the transformer. These papers have overcome the 

above-said weaknesses, by including losses in the objective function calculation. But the 

numerical field analysis technique has the disadvantage of complex mesh size in 3D 

configurations [22]. Besides, the minimization of only one TD objective is considered [19,23] 

resulting in a single solution, which may not suit the requirements of all the categories of 

decision-makers. The type of magnetic material (TMM) is also not utilized as a design variable 

in the optimization process [15,19,23]. 

A novel gamma approach [24] and BFA based optimal design [6] have been proposed for 

solving the multi-objective TD optimization problem. But the authors failed to consider a three 

phase transformer and have not taken TLTC as one of the TD objectives. Generally, the 

objective functions of the TD problem are no differentiable, non-convex, mixed-variable, non-

linear, and multi-modal and it is very difficult to obtain an optimal solution. Furthermore, TD 

calculations require access to several look-up tables’ data for the evaluation of specific core loss 

at various flux densities, winding gradient, oil gradient, and heat transmission. Such complex 

analytical calculations interacting with graphical data are not handled accurately by the 

derivative based methods discussed above and thus the optimal solution is not guaranteed for 

the TD optimization problem solved by the analytical methods. Apart from the deterministic 

methods, soft computing techniques such as genetic algorithm (GA) and neural network are also 

employed for the TD optimization. GA has been applied for the minimization of MC, 

incorporating TMM as design variable [14], transformer cost plus running cost minimization 

[16,17], and optimal placement of distribution transformers [18]. Neural network technique has 

been applied for the prediction and minimization of power losses [22], and minimization of no 

load loss [2,3]. But these papers used single optimization method for TD which limited the 

optimization performance of their approach. A more recent approach to adapting the search 

direction is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) proposed by 

Hansen and Ostermeier [25]. Its important property is invariance against the linear 
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transformations in the continuous search space, when compared to other evolutionary 

algorithms (EAs). 

CMA-ES is a continuous (real-parameter) EA that generates new population members by 

sampling from a probability distribution that is constructed during the optimization process. 

Owing to the learning process, CMA-ES is invariant to rotation and scaling of the coordinate 

system, reliably adapts well to ellipsoidal functions, and significantly improves convergence 

rate especially on non-separable and/or badly scaled objective functions. CMA-ES thus finds a 

global or near optimal minimum without using derivatives of the objective functions. CMA-ES 

is a strong optimizer that outperformed its other similar learning algorithms in CEC2005 

benchmark functions and BBOB-2009 . Hence in this paper CMA-ES is applied for solving this 

complex TD optimization problem. 

The main contributions of the paper are: (a) application of CMAES for TD optimization for the 

first time, assuring accuracy, consistency and convergence; (b) incorporation of TMM as one of 

the design variables for representing 10 different materials; (c) inclusion of variable, voltage per 

turn in place of low voltage (LV) turns; (d) implementation of three case studies to show the 

superiority of MDV; (e) optimization of four different objectives such as minimization of 

purchase cost, minimization of TLTC, minimization of total mass, and minimization of total 

loss, individually suggesting the designer a set of optimal transformers instead of single 

solution, so that he can choose which of them best fits the requirement of the customer and 

application under consideration; (f) comparison of simulation results with recent report [15], 

conventional transformer design procedure (CTDP) , Self Adaptive Differential Evolution 

(SaDE), and Real coded Genetic Algorithm (RGA); (g) use of multi-objective TD optimization 

using NSGA-II. 

This paper is organized as follows: Sections Design of distribution transformer, CMA-ES 

algorithm an overview, CMA-ES based TD optimization, Multi-objective TD optimization, 

Computational results and Conclusion the paper 

Design of distribution transformer 

Preliminary input for TD The design procedure is presented for a three-phase oil-immersed 

shell-type wound core distribution transformer. The specified information consists of desired 

input variables required for the transformer design employing analytical formulae to calculate 

the transformer parameters. These transformer variables include transformer rating, design 

requirements on guaranteed no-load loss (PGNLL), guaranteed load loss (PGLL), guaranteed 

short circuit impedance (Uks), minimum full-load efficiency, maximum temperature rise, 

voltage regulation, tolerances e1, (e2), core stacking factor, mass density of core, magnetization 

curve of the magnetic material (MM), specific core loss data [30] for various maximum 

magnetic flux densities at 50 Hz frequency for 10 magnetic materials (M3-0.27, M4-0.27, 

MOH-0.23, MOH-0.27, 23ZDKH90, 23ZH90, 23ZH95, 27ZDKH95, 23ZDMH85, and 

27ZDMH), resistivity of the conductor material (copper) at the maximum specified temperature, 

type of internal and external winding, typical practical values for insulation of conductor, 

distance and insulation between windings and core, mass density of conductor, distance 

between two adjacent cores, maximum ambient and winding temperature, direction space factor 
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for turns and layer, HV taps, etc. The copper sheet is used for LV conductor and copper wire is 

used for HV conductor. 

CMA-ES algorithm an overview 

Evolution strategies (ES) are stochastic, derivative-free methods for numerical optimization of 

non-linear problems. CMA-ES is an efficient ES for problems for which derivative-based 

methods are unsuccessful, due to rugged search space with multiple discontinuities, sharp 

bends, and local optima. This algorithm is analogous to the gradient-based quasi-Newton 

method. CMA-ES has emerged as a very competitive real-parameter optimizer for continuous 

search spaces. It adapts two unique principles; maximum likelihood principle and two evolution 

paths and thus distinct from other ES. It is a continuous EA that generates new population 

members by sampling from a multivariate normal distribution N(m, C) constructed by its mean 

value, m e Rn and its symmetric positive definite covariance matrix, C e Rnxn during the 

optimization process. ‘m’ of the distribution determines the translation displacement and gets 

updated such that the likelihood of previous successful candidate solutions is maximized. ‘C’ 

has a geometrical interpretation, can be uniquely identified with the iso-density ellipsoid. ‘C’ 

determines the shape of the distribution ellipsoid, whose principal axes are eigenvectors of ‘C’ 

and squared axes lengths are eigenvalues. This algorithm exploits two adaptation mechanisms; 

Covariance Matrix Adaptation (CMA) and step size (r) adaptation. 

 

Fig. 1. Estimation of the covariance matrix 

 

NSGA-II 

The steps involved in the working of NSGA-II are given below. 

Step 1: Initially generate a random parent population, Pt of size Np at generation ‘t’. 

Step 2: Calculate all the objective function values separately for the entire population. Sort the 

population-based on non-domination levels. 
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Step 3: Assign a rank for each solution based on its non-domination level. 

Step 4: Apply the binary tournament selection, Simulated Binary Crossover (SBX) crossover, 

and polynomial mutation operators on Pt and create an offspring population Qt of size Np. 

Step 5: Combine parent and offspring populations to implement elitism and form an 

intermediate population, Rt of size 2Np. 

Step 6: Evaluate the fitness for 2Np population solutions using multiple objective functions. 

Step 7: Perform non-dominated sorting over the 2Np population to rank and divide the 

individuals into different POFs. Assign rank for the POFs in such a way that the first non-

dominating POF with rank one and so on. 

Step 8: Calculate the crowding distance of all the solutions. Higher the value of crowding 

distance better is the probability of the solution to be selected for the next generation. 

Step 9: Select Np member for the new population Pt+1 from the combined population 2Np, on 

the basis of ranking and crowding distance. i.e., choose individuals of the best low ranked POFs 

first followed by the next best POF and so on. In case there is space only for a portion of a POF 

to accommodate in the new population, choose individuals among those in the front that are 

from the least crowded regions (determined by a crowded-distance operator and fill up the 

required number in the new population, Pt+1. 

Step 10: Form the parent population for the next generation Pt+1. 

Step 11: Check if the termination criteria are met. If yes, get the Pareto optimal solution. Else go 

to step 4. 

Computational results 

To demonstrate the effectiveness of the proposed MDV, a design example of 400 KVA, 50 Hz, 

20/0.4 kV, 3 phase, shell type, wound core transformer with vector group, Dyn11 has been 

considered. The upper and lower bounds of the design variables, AA, BB, unit price of 

transformer materials Crem, Clab, Sm, e1 = 15%, e2 = 10% are derived from [15]. As reference 

transformer, the transformer with loss category AB0 according to CENELEC is selected, which 

means that PGNLL = 750 W, PGLL = 4600 W, and Uks = 4%. Coding for TD optimization is 

developed using MATLAB 7.4 on Intel core, i3 processor Laptop, operating at 3.2 GHZ, with 3 

GB RAM. Suitable modifications are incorporated for handling TD constraints in the coding of 

CMAES algorithm. The population size and a maximum number of function evaluations are 

fixed at 100 and 10,000 respectively. 

Conclusion 

In this paper, CMA-ES algorithm is employed for the optimum design of a three-phase 

distribution transformer. The work proposed aiming at contributing a TD that minimize the 
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objective(s) such as purchase cost, total life-time cost, total mass, and total loss of the 

transformer using proposed MDV, taking into account the constraints imposed by the 

international standards, transformer specifications, and customer needs. The validity of the 

CMA-ES algorithm for solving TD optimization problem is illustrated by its application to a 

400 KVA distribution transformer design and comparison of its simulation results with CTDP, 

BBA-MINLP method, SaDE, and RGA. The significance of MDV for all the TD objective 

functions and have proven that MDV is efficient for the TD optimization problem. The 

proposed MDV is not only capable of producing optimum design but also render considerable 

cost savings, material savings, and loss reduction. Statistical analysis has clearly demonstrated 

the effectiveness of CMA-ES with respect to its global searching, solution precision, 

consistency in obtaining solutions, and faster convergence. Thus it is evident that CMA-ES with 

dv3 is able to give the least purchase cost (z1), TLTC (z2) with cost savings of about 10%, 6% 

and, 17%, 5% respectively on comparison with BBA-MINLP method [15] and CDTP. This 

paper has also dealt with the solution of TD MOP using NSGA-II with the tradeoff between 

purchase cost and TLTC. The best compromise solution obtained by fuzzy set theory for the 

multi-objective TD optimization gives a much better transformer design than the one obtained 

by single objective TD optimization using CMA-ES, by saving 1785 Euros of TLTC, which is 

accepted by SEEDT as an energy-efficient TD objective. 
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