International Research Journal in Global Engineering and Sciences. (IRJGES)
ISSN : 2456-172X | Vol. 2, No. 3, September - November, 2017 | Pages 46-51

DATA ORIENTED WORK FLOW
MANAGEMENT FOR DISTRIBUTED DATA
MINING APPLICATIONS

Dr P BANUMATHI Ms T .SAKTHI SREE Ms. SPVIDHYA PRITA

. . 2 .
Associate Professor!. Assistant Professor?, Assistant Professor
sakthisree (@ email comspvidhva. poiva(@email com bhanumathi mohankumar(@vahoo.com

Department of CSE, Kathir College of Engineering, Coimbatore, Tamil Nadu, India.

3

ABSTRACT

Workflow environments are used in data mining systems to lever data and execution flows
associated to difficult applications. Weka, one of the frequently used open-source data mining systems,
includes the Knowledge Flow environment which provide a drag-and-drop interface to ereate and
perform data mining workflows. The Weka KnowledgeFlow permits users to execute workflow only
on one computer. Most data mining workflows include several autonomous branches that could be run
mn parallel on a set of distributed machines to cut the overall execution time. I implemented distributed
workflow implementation in Wekad WS, a framework that includes the facilities of Weka and its
KnowledgeFlow environment to extend distributed resources accessible in a Grid using Web Service
technologies. In this paper I illustrate the Wekad WS architecture and the functionalities provided by its
service-oriented Knowledge Flow module, presenting its utilization to compose and execute easy
parallel data mining workflows. Furthermore, I present ongoing work aimed at supporting also data-

parallel workflows on a Grid.

1. Introduction

Data mining systems are used by lot of
seientific and business organizations to learn
helpful knowledge from the inereasing amount
of data they acquire. Workflow environments
are commonly employed in data mining
systems to manage data and execution flows
associated to complex applications. One of the
most used data mining systems is Weka, an
open-source framework providing a wide set of
algorithms and tools for processing and
analyzing data.

The Weka toolkit includes a workflow
environment called KnowledgeFlow, which
provides a drag-and-drop interface to compose
and execute data mining workflows referred to
as “knowledge flows.” A knowledge flow
describes interactions and execution flows
among data sources, filtering tools, data mining
algorithms, and visualizers, allowing users to
define and execute complex data mining
applications. Once defined. knowledge flows
can be stored and retrieved for modifications
and/or re-execution: this allows users to define

distinetive application patterns and reuse them
in different contexts.

The Weka KnowledgeFlow allows users
to carry out a complete workflow only on a
single machine. On the other hand, most
knowledge flows imnclude several autonomous
branches that could be run m parallel on a set of
distributed machines to reduce the overall
execution time. We implemented distributed
workflow execution in Wekad WS [8]. a
framework that extendsWeka and its
KnowledgeFlow environment to use distributed
machines available in a Grid system using Web
Service technologies.

The Grid facilities are exploited by
Wekad WS because it provides a set of services
to access distributed computing nodes. which
can be effectively used to run complex and
resource-demanding data mining applications
[9]. In particular, WekadWS adopts a service-
oriented architecture in which Grid nodes
rendering a wide set of data mining algorithms
as Web Services, and client applications can

www.irjges.com | Dr.P.BANUMATHI et. al.

Page 46

http://www.irjges.com/

International Research Journal in Global Engineering and Sciences. (IRJGES)
ISSN : 2456-172X | Vol. 2, No. 3, September - November, 2017 | Pages 46-51

call up them to run distributed data mining
applications defined as workflows.

In this paper I describe theWekadWSs
architecture and the functionalities provided by
its KnowledgeFlow component, showing its use
to create and execute distributed data mining
workflows on a Grid. In this paper I present
ongoing work aimed at supporting data parallel
workflows on a Grid.

2. Related Work

A few systems are related to Wekad WS
for their focus on supporting distributed data
mining workflows.

A service-oriented approach like
WekadWSs 1s adopted by FAEHIM [1]. which
exposes a set of data mining algorithms as Web
Services. However. in a diverse way from
WekadWs, FAEHIM does not provide a
workflow system of its own. but relies on
Triana [6] for composing data mining services
as workflows. Furthermore, the FAEHIM
services are not based on the WSRF
technology.

The Knowledge Grid [2] is another
service-oriented system supporting distributed
data mining workflow execution. Like
WekadWs, it uses WSRF as enabling
technology. UnlikeWekadWs. which extends
an already existing workflow system (the Weka
KnowledgeFlow). the Knowledge Grid defines
its own workflow formalism and provides a set
of services to maintain the workflow execution.

Some other systems are related to
WekadWS for their support to distributed data
mining on the Grid. In any case. Wekad WS
differs from all of them for its focus on
exploiting and extending the well-established
Weka toolkit, thus allowing domain experts to
create and execute distributed data mining
workflows using a renowned user interface.

3.Weka4WS architecture

The novel Weka toolkit may be
considered as it were made by two main parts:
the Weka Library (WL) and the Graphical User
Interface (GUI). The Weka Library is an
extendible set of data mining algorithms for
classification. clustering and association rules

discovery. The Graphical User Interface
provides a set of wisual tools, which permit
users to execute data mining algorithms on
given datasets: 1t includes the Knowledge-
Flow environment discussed earlier. At the
same time Weka 1s logically composed by two
separate parts, it is in fact a single application
that runs on a single machine.

Wekad WS broaden Weka by extracting
its WL part and deploying it as Web Service on
a set of isolated Grid nodes [4]. Wekad WS also
broaden the Weka GUI to allow the execution
of data mining tasks both locally and remotely:
the local execution is executed through the
local WL, as in the original Weka system: the
remote execution is performed by mvoking one
or more WLs presented as Web Services on the
Grid. For the applications designed with the
KnowledgeFlow. the data mining algorithms
belonging to mdependent branches of the
workflow can be executed in parallel on diverse
Grid nodes.

The Web Services wmmplemented in
Wekad WS obey with the Web Serviees
Resource Framework (WSRF), a set of
standards related to the designing, addressing,
inspection and lifetime management of stateful
resources using Web Services. WSRF 1s widely
adopted as the standard technology for
implementing Grid services and systems. So,
the use of WSRF as center technology allows
WekadWSs to be easily incorporated with the
most used Grid platforms. like Globus Toolkit

[5].

Wekad WS has been developed using
the WSRF libraries provided by Globus Toolkit
and wuses its services for standard Grid
functionalities such as security and data
transfer. The WekadWS framework has two
types of nodes:

User node: the node where the client
side of the application runs. It includes an
extension of the Weka Graphical User Interface
(GUI), the Weka Library (WL). and a Client
Module (CM).

Computing node: the server side of the
application. It includes a Web Service (WS)
and the Weka Library (WL). The WS can be

www.irjges.com | Dr.P.BANUMATHI et. al.

Page 47

http://www.irjges.com/

International Research Journal in Global Engineering and Sciences. (IRJGES)
ISSN : 2456-172X | Vol. 2, No. 3, September - November, 2017 | Pages 46-51

invoked by remote user nodes to present data
mining tasks.

Data to be mined may be situated either
at the user node, or at the computing node. or at
some other remote resource (for example some
shared repositories). When data are not
available at the computing node they are moved
by means of GridFTP [10]. a reliable data
transfer protocol which is part of Globus

Toolkit.
Q)

Grmatee Leae frinchica
Kezrga Mo

isea| Wana Cjasi
at [

—
e
—
4
H
M

i

T— Carepuing hadn

Figure 1. Schematical representation of the
user and the computing nodes.
Figure 1 shows the WekadWS software
components of the user node and the computing
node, and the interactions among them.

A user works on the KnowledgeFlow
GUI to make a data mining workflow. typically
composed by multiple data mining tasks: the
local tasks are carried out by invoking the local
WL, while the remote ones are carried out
through the CM which acts as liaison between
the GUI and the remote Web Services. Each
task is performed in a thread of its own thus
permitting to run multiple tasks in parallel.

At a computing node. the WS responses
to the CM requests by invoking the suitable
algorithms in the underlying WL. The calling
upon of the algorithms is performed in an
asynchronous way. i.e. the CM submits the task
in a non-blocking mode and outcomes are
cither notified to it as soon as they are
computed (push-style mode) or they are
frequently checked for readiness by the client
(pull-style mode) depending on the network
configuration (e.g.. the presence of a firewall).

4. KnowledgeFlow Wekad4WS

KnowledgeFlow i1s a part of Weka,
which permits composing workflows for giving
out and analyzing data. A workflow can be
completed by selecting components from a tool
bar, inserting them on a layout canvas and
linking them together: each component of the
workflow is required to carry out a specific step
of the data mining process.

WekadWS broaden the Weka
KnowledgeFlow permitting the execution of
distributed data mining workflows on Grids by
adding annotations into the knowledge flows.
Through annotations a user can state how the
workflow nodes can be mapped onto Grid
nodes.

The selection of the location where to
run a certain algorithm is made into the
configuration panel of each algorithm, available
by right clicking on the given algorithm and
choosing Configure. A drop down menu has
been added through which it is possible to
select either the exact Grid host where the
desired current algorithm to be executed (where
local host will make the algorithm be computed
on the local machine) or to let the system
robotically choose one by selecting the auto
entry. The presently used strategy in the auto
mode is round robin: on each invoecation the
host in the list next to the previously used one
is picked.

In a knowledge f{flow. each node
representing a data-mining algorithm can be
linked to a performance evaluator node. a
component which evaluates the model
generated by a data mining algorithm and
makes a set of performance indices about that
model. Although a data mining algorithm and
its performance evaluator are depicted by two
separate workflow nodes, the model generation
and its evaluation are actually both performed
in combination at the computing node chosen
(or to be automatically chosen. in case the auto
mode is selected) for the data mining algorithm.

The calculations may be started either
by selecting the Start loading entry in the right-
click context menu of each loader component
of the flow (just like uvsually done in the
conventional Weka Knowledge Flow) or by

www.irjges.com | Dr.P.BANUMATHI et. al.

Page 48

http://www.irjges.com/

International Research Journal in Global Engineering and Sciences. (IRJGES)
ISSN : 2456-172X | Vol. 2, No. 3, September - November, 2017 | Pages 46-51

clicking the Start all executions button in the
right-top corner of the window (which is more
convenient in flows with multiple loader
components). Clicking a Log button. in the
right-lower corner of the window. it is likely to
follow the computations in their very single
steps as well as to know their execution times.

4.1. Remote execution of workflow

Each data mining task defined in a
workflow is carried out as a sequence of steps.
explained in the following through an example.
In this example we assume that the considered
data mining task requests the execution of a
classification task on a dataset which is stored
at the user node. but not at the computing node.
This is to be considered a worst scenario
because in many cases the dataset to be mined
is already available (or replicated) on the Grid
node where the task is to be submitted.

The whole execution steps may be
divided into 8 steps shown in Figure 2:
1.Resource creation: the create Resource
process is invoked to create a new resource that
will maintain its state throughout all the
succeeding invocations of the Web Service
until its destruction. The state is stored as
properties of the resource. After the resource
has been formed the Web Service returns the
endpoint reference (EPR) of the created
resource. Subsequent requests from the Client
Module will be transferred to the resource
identified by that EPR.

2. Notification subscription and notifications
check: the subscribe operation 1s called in order
to alert about changes that will occur to the
Result resource property. As soon as this
property value modifies (that is upon the
conclusion of the data mining task) the Client
Module is alerted of it. Just after the subscribe
operation the not if Check operation is called to
request the immediate send of a dummy
notification to check whether the Client Module
is able to receive notifications or not: in the first
case the Client Module will employ the push-
style mode, otherwise it will proceed in the
pull-style mode.

3. Task submission: the classification operation
is invoked in order to request for the execution

of the classification task. The operation returns
a Response object. If a replica of the dataset is
not already available at the computing node,
then the field datasetFound is set to false and
the dirPath field is set to the URL where the
dataset has to be uploaded: likewise., when a
justification is required on a test set which is
dissimilar from the dataset and the test set is not
previously available at the computing node. the
testsetFound field is set to false. The URL
where the test set has to be uploaded is similar
to that of the dataset.

4. File transfer: since in this example we
understood that the dataset was not already
available at the computing node. the Client
Module requires to transfer it to the computing
node. To that end. a Java GridFTP client [7] is
instantiated and initialized to interoperate with
the computing node GridFTP server: the dataset
(or test set) is then moved to the computing
node machine and stored in the directory whose
path was specified in the dirPath field contained
in the Response object returned by the
classification operation:

5. Data mining: the Web Service begins the
classification analysis through the invocation of
the appropriate Java class in the Weka library.
The outcomes of the computation are stored in
the Result property of the resource created on
Step 1:

6. Notification reception: Immediately after the
Result property is changed a notification is sent
to the Client Module by invoking its inherent
deliver operation. This method allows the
asynchronous delivery of the execution results
as soon as they are created. In those cases
where the client is wunable to receive
nofifications the client will be checking from
time to time the results for readiness through
the value of the Result’s field ready:

7. Results retrieving: the Client Module invokes
the operation getResourceProperty in order to
take back the Result property containing the
results of the computation:

8. Resource destruction: The Client Module
invokes the destroy operation. which removes
the resource created on Step 1.

www.irjges.com | Dr.P.BANUMATHI et. al.

Page 49

http://www.irjges.com/

International Research Journal in Global Engineering and Sciences. (IRJGES)
ISSN : 2456-172X | Vol. 2, No. 3, September - November, 2017 | Pages 46-51

I'J ‘] Wk Serdios
0
Chenl Module

oy
R
i)
B
o
st

')

| aw] ©
o '
~ Fesult
L
. ;
.
S Wi
L] f
a Dataser 5 Lirary
-
R
~ .
.
s GroF TP Server
Linws Rows Carrpateg M

Figure 2. Execution mechanism of a single
workflow task.

5. Data-parallel workflows

A type of parallelism, which runs
multiple independent tasks in parallel on
different processors, available on a single
parallel machine or on a set of machines
connected through a network like the Grid.

Another type of parallelism that could
be efficiently exploited in data mining
workflows is data parallelism [3]. where a vast
data set is cracked into smaller parts, each part
is processed in parallel, and the results of each
processing are then combined to produce a
single result.

Both parallelism type aim to reach
execution time speedup. and a better utilization
of the computing resources. but while suuple
parallelism spotlights on running multiple tasks
in parallel so that the execution time matches to
the slowest task. data parallelism focuses on
minimizing the execution time of a single task
by dividing it into subtasks, each one operating
on a subset of the original data.

The data-parallel approach s
extensively employed in distributed data
mining as it permits to process very large
datasets that could not be analyzed on a single
machine due to memory restrictions and/or
computing time constraints. An example of
data-parallel application is distributed

classification: the dataset is divided into
different subsets that are analyzed in parallel by
multiple instances of a given classification
algorithm: the resulting “base classifiers™ are
then used to get a global model through a
variety of selection and combining techniques.

Our work is focusing on supporting data
parallelism in the Wekad WS KnowledgeFlow
to execute distributed data mining patterns like
distributed classification. To hold this type of
paradigm. we created a new component in the
KnowledgeFlow, called DataSetPartitioner. A
DataSetPartitioner component accepts one
dataset m input. divides it mto a number of
partitions equal to the number of its outgoing
arcs, and assigns each partition to one
workflow node representing a data mining
algorithm (for example, a classification
algorithm). In case the data mining algorithm is
annotated to run on a remote computing node,
the subset assigned to it will be moved to that
computing node.

6. Conclusions

Workflow management systems are of
great significance to hold an effective design
and execution of data mining applications. One
of the main data mining workflow systems 1is
the KnowledgeFlow environment of Weka. The
Weka KnowledgeFlow permits users to execute
a whole workflow only on a single machine. In
this paper I presented a Grid-enabled version of
Weka, called WekadWSs. which gives an
addition to the KnowledgeFlow environment to
support distributed execution of data mining
workflows on a Grid.

WekadWS employs a service-oriented
approach in which all the Weka data mining
algorithms are covered as Web Services and
deployed on Grid nodes: users can create and
invoke those services in a apparent way by
defining data mming workflows as in the
original Weka KnowledgeFlow. This approach
permits to define simple parallel data mining
applications in a simple and effective way.

I am currently working to make
Wekad WS supporting also data parallelism. To
this end. I implemented new components in the
KnowledgeFlow which permit data partitioning

www.irjges.com | Dr.P.BANUMATHI et. al.

Page 50

http://www.irjges.com/

International Research Journal in Global Engineering and Sciences. (IRJGES)
ISSN : 2456-172X | Vol. 2, No. 3, September - November, 2017 | Pages 46-51

and model selection. These components allow
to name a wider set of data mimning applications.
like distributed classification. to be planned and
executed as workflows. I am planning a set of
experiments to assess the scalability of various
data-parallel workflows on large datasets.

References

1)

2)

4)

5)

A.Ali Shaikh . O. F. Rana, I. T. Taylor.
Web Services Composition for
Distributed Data Mining. Workshop on
Web and Grid Services for Scientific
Data Analysis. 2005,

A.Congiusta, D. Talia. P. Trunfio.
Distributed data mining services
leveraging WSRF. Future Generation
Computer Systems, 23(1):34-41, 2007.
C.Pautasso. G. Alonso, Parallel
Computing Patterns for Grid
Workflows, Workshop on Workflows in
Support of Large-Scale Science, 2006.
D.Talia, P. Trunfio. O. Verta. The
WekadWSs framework for distributed
data mining in service-oriented Grids.
Concurrency and Computation: Practice
and Experience, 20(16): 1933-1951.
2008.

LFoster. Globus Toolkit Version 4:
Software for service-oriented systems.

6)

)

8)

9)

10)W.

Conference on Network and Parallel
Computing, LNCS 3779: 2-13, 2005.

ILTaylor. M. Shields. I. Wang. A.
Harrison. The Triana Workflow
Environment: Architecture and

Applications. In: I. Taylor, E. Deelman,

D. Gannon. M. Shields (Eds.)
Workflows for e-Science, Springer:
320-339, 2007.

Java GridFTP client.

hitp://www.globus.org/cog/jftp [Visited:
14 Tanuary 2009]

M. Lackovie, D. Talia. P. Trunfio.
Service Oriented KDD: A Framework
tor Grid DataMmingWorkflows. 10th
International Workshop on High
Performance Data Mining, 2008.

S. Hettich, S. D. Bay. The UCI KDD
Archive, University of California,
Department of Information and
Computer Science.
hitp://kdd.ics.uciedun [Visited: 14
January 2009]

Alleock, J. Bresnahan, R.
Kettimuthu, M. Link, C. Dumitrescu, I.
Raicu. I Foster. The Globus striped
GridFTP framework and
Supercomputing Conference,

SEIVET.

2005,

www.irjges.com | Dr.P.BANUMATHI et. al.

Page 51

http://www.irjges.com/

