\\ | / International Research Journal in Global

~4k— Engineering and Sciences. (IRJGES)

ISSN : 2456-172X | Vol. 3, No. 1, March - May, 2018
— Pages 166-173 | Cosmos Impact Factor (Germany): 5.195
IRJGES  Received: 01-03-2018 Published : 22.05.2018

A SUPPLEMENTARY ON
CONVERGENCE THEORY OF
APPROPRIATE MULTISPLITTINGS

Dr.R Arumugam
Jeppiaar Engineering College, TN. India

ABSTRACT. In thiz paper, we first prove a few comparizon results hetween two
proper weak repular splittings which are useful in getting the iterative solution
of a large class of rectangular (square singular) linear system of equations
Ax = b, in a fastor way., We then derive convergence and comparison results

for proper weak regular multisplittings.

1. INTRODUCTION

Berman and Plemmons [3] introduced the notion of proper splitting for rect-
angular/square singular matrices in order to find the least squares solution of
minimum norm of a rectangular system of linear equations of the form

Ar =B, (1.1)

where A € R™*™ and b € R™, which we recall next. A splitting 4 = U/ — V' of
A e B™" is called a proper splitting if R(U) = R(A) and N(I7) = N(A), where
RiA) and N(A) denote the range space and the null space of A, respectively.
Then, the same anthors proved that the iterative scheme,

r —ptvek Uy, k=0,1,2,..., (1.2)

converges to A'h, the least squares solution of minimum norm, for any initial vec-
tor = if and only if the spectral radius of UTV is less than one (see [, Corollary
1]). The above iterative scheme is said to be convergent if the spectral radius of
the iteration matrix /TV is strictlv less than one. The advantage of the iterative
technique for solving the rectangular svstem of linear equations (Ar = b) is that
it avoids the use of the normal system AT Ax = ATh, where AT A is frequently
ill conditioned and influenced greatly by roundoff errors (see [12]). Such sys-
tems appear in deconvolution problems with a smooth kernel. Square singular
linear systems also appear in problems like the finite difference representation of
Neumann problems.
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The authors of [1] obtained several convergence eriteria for (1.2). In the re-
cent vears, several convergence and comparison results for different subelasses
of proper splittings have been proved by many authors such as Baliarsingh and
Mishra [1], Climent et al. [6], Jena et al. [13], Mishra [15]. To get faster con-
vergence, Climent et al. [%] introduced the notion of proper multisplittings and
obtained convergence criteria by extending the work of O'leary and White [16]
to rectangular matrices. This article further continues to investigate the com-
parisons of the rate of convergence of two iterative schemes in order to get the
desired solution in less time.

The paper is organized as follows. The next section contains notation, defini-
tions and preliminary tools. In Section 3, we prove our main results. First we
prove a couple of comparison results between two proper weak regular splittings,
and then we discuss a few applications of theory of proper weak regular splittings
to multisplitting theory of rectangular matrices.

2. PRELIMINARY NOTION AND RESULTS

The notation R™*™ represents the set of all real matrices of order m = n. We de-
note the transpose of a matrix A € B™" hy A7, Let L and M be complementary
subspaces of R", and let Py, 5 be a projection onto L along M. Then FPp A=A
if and only if R(A) C L, and APy s = A if and only if N(A) 2 M. In the case
of L L M, P will be denoted by Fp, for notational simplicity. The spectral

radius of a matrix A € BR™", denoted by p(A), is defined by p(A) = max Ayl
1T

where Ay, Mg, ..., A, are the eigenvalues of A, Let 4 and B be two matrices
of appropriate order such that the products AB and BA are defined. Then
p(AB) = p(BA). Let A € B™™ A > 0 denote the matrix whose entries are
non-negative. Let B, € R™". We write B > ¢ if B — C > 0. The same
notation and nomenclature are also used for vectors. For A € B™*" the unique
matrix £ € B"*™ satisfying the following four equations known as Penrose equa-
tions: AZA = A, ZAZ = Z, (AZV" = AZ, and (ZA)T = ZA, is called the
Moore—Penrose inverse of A. It always exists and is denoted by A'. The follow-
ing properties of A" will be frequently used in this paper:
R(AT) = R(AT), N(AT) = N(A"), AAT = Pga), and ATA = Py a7y. The matrix
A is called zemimonotone if A has the non-negative Moore-Penrose inverse, We
refer to [2] for more detail. Similarly, a square matrix A is called monotone if
A~ exists and A~ = 0 (see [1]).

We next turn our attention to results related to proper splittings The first one
saysif A = U=V is a proper splitting of A € ™" then A = U(I-UV), I-UTV
is invertible and AT = (7 —U"V)~'UU7. This is proved in |3, Theorem 1]. Similarly,

167 Dr.R Arumugam



| International Research Journal in Global
\it/
\ {#/

~ Engineering and Sciences. (IRJGES)
ISSN : 2456-172X | Vol. 3, No. 1, March - May, 2018
— Pages 166-173 | Cosmos Impact Factor (Germany): 5.195

IRJGES  Received: 01-03-2018 Published : 22.05.2018

Climent and Perea [6] proved that A = (I — VUN and AT = U1 — VU~ for
a proper splitting A =0 — V.

For all proper splittings, the iteration scheme (1.2) may not converge. So,
different convergence conditions are obtained for different subclasses of proper
splittings by several authors starting with Berman and Plemmons [3]. We first
collect below three such subelasses and then convergenee criteria for the same
subeclasses.

Definition 2.1. A proper splitting A = I7 — V of A € BE™*" is called

(i) a proper regular splitting if U7 > 0 and V > 0; (see [13]).

(ii) a proper weak regular splitting of type 1 if UT = 0 and UTV = 0; (see [6]).
(iii) a proper weak regular splitting of type ILif U = 0 and VT = 0; (see [0]).

Next one combines [, Corollary 4] and [10, Theorem 3.7] and contains conver-
gence criteria for both the above subelasses.

Theorem 2.2. Let A = U —V be a proper weak regular splitting of either type 1
or type I of A € R™*" Then, A is semimonotone if and only if p(UTV) < 1.

3. MAIN RESULTS

This section have two parts. In the first part, we reprove a result by dropping
one assumption and providing a complete new proof. We then present another
comparison result. In the second part, we diseuss theory of proper multisplittings.

3.1, Comparison results. Comparison of the spectral radii of two proper split-
tings are useful for improving the speed of the iteration scheme (1.2). In this
direction, several comparison results have been introduced in the literature both
in rectangular and square nonsingular matrix setting, Very recently, Giri and
Mishra [10] proved the following comparison result which extends [19, Theorem
3.7] to the rectangular case.

Theorem 3.1. [10, Theorem 3.13]
Let A=1U4 — V) =Us— V5 be two proper weak regular splittings of different types
of a semimonotone matric A € R™*™. Suppose that no row or column of A is
zero. If UL < UL, then p(UIV)) < p(UJV) < 1.

We next provide an example where the condition “no row or column of A% is
zero” in Theorem 3.1 fails, but the conclusion holds.

_0
Example 3.2, Let A = ( _53 1' g ) =0 — V= Ua — Va, where

, T =110 _ 14 -2 0 .
[.]=(_3 1 ﬂ) B_I'Id[.--g—(_g 12 D)' I'en
01600 0.0400
=1

R(U,) = R(Uy) = R(A), N(U,) = N(Uy) = N(A), Ul = [ 0.1200 0.2800
0 0
0.1600 0.1600 0

L-’,T‘r"1= 0.1200 01200 0 ) =0,
0 0 0
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0.0800 0.0133
o ot (06400 01067
Ul = D.DSDD 0.0533 >0, Vol = (u.mnn 0666 ) =0

Hence, A = Uy — V) is a proper weak regular splitting of type I and A =Us — 145

0 0
0.1600  0.0400 _ 00200 0.0133
and /] = [ 0.1200 0.2800 = [y = | 0.0600 0.0933 |. But 0.2800 =
0 0 0 0
p(UTWL) < p(U3Va) = 0.6667 < 1.
This leads to the fact that Theorem 3.1 may be true even without the assump-

tion “no row or column of A" is zero”. This is stated and proved in the next
result. The technigque used in this proof is different from the earlier proof.

0.2222 0.1111
is a proper weak regular splitting of type 1L Also AT = | 0.1667 03333 | >0

Theorem 3.3. Let A =1, — Vi =Us — Vi be two proper weak regular splittings
of different types of a semimonotone matrizr A € R™". If U] < U], then
p(UTVY) < p(U3Va) < 1.
Proof. Let us first consider that A = ['y — V) is a proper weak regular splitting of
type I and that A = /s — 15 is a proper weak regular splitting of type II. We then
have p f.-_']_'L-'l} = 1 and pﬁ’gb’g } < 1 by Theorem 2.2. The conditions L"IL-} =0
and p(U]V}) < 1imply (I — UJV})~! = 0. Similarly, (I — VaUJ)=' = 0. Now,
postmultiplying Ul < L",T by (I — ‘.rfgf.-'g )~!, we obtain
At = vl —wuh? < vl —wuh !, (3.1)
and then premultiplying (3.1) by (I — L";r V1)L, we get
(F—Uuhv)tAl < (1 — Ui~ 'of(r —vaUd) ™t = AT — wU) ™. (3.2)
Sinee L"IL-} = (0, there exists an eigenvector r > 0 such that
I,{.U]TF] _ p{ f'lTLl':III_

So, r € R(V{') € R(AT). Premultiplying (3.2) by 27, we have

— AT < 2T AN (T — WUl
1—p(Ui W)
From [, Theorem 2.1.11], we obtain
T S T 1 (3.3)

1—p(UIVi) = 1—p(Val]) 11— p(UIVa)’
as r' AY = 0 and 27 AT + 0. Suppose that £ AT = 0, then z" ATA = 0; that is,
(ATA)Tz = A'Ar = r = 0, a contradiction. Hence 7 At # 0. Now, the desired
result follows immediately from (3.3). The proof for the other types of splittings
can be done similarly. O

The next example shows that the converse of the above result is not true.
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To—3 T

Example 3.4. Let A = 9 8 _9|= Uy — V) =Us — Vs, where
.|

I = ( E:‘S Ig 51& ) and Us = ( 1;5 55 i; ) Then
0.0267  0.0100
R(U,) = R(Us) = R(A), N(U;) = N(Uy) = N(A), L"I = | 0.0200 00700 ) =0
0.0267  0.0100

03333 0 03333 -
Uivi=1{ 0 05000 0 | =0 W= (“‘“}{}m 0 r{é{m) = 0. Hence,
0.3333 0 0.3333 '

A=U; — V) is a proper weak regular splitting of tvpe l and A = Us — V5 is a

0.0200  0.0300
proper weak regular splitting of type I1. Also AT = | 0.0400 0.1400 | = 0 and
0.0200  0.0300

p(UTVI) = 0.6667 < p(UIV3) = 0.7500 < 1.
_ 0.0400 0.0075 0.0267 0.0100
But U] = | 0.0200 0.0350 | £ U] = | 0.0200 0.0700 | .
0.0400 0.0075 0.0267 0.0100

For two proper weak regular splittings of the same type, we have the following
comparison result.

Theorem 3.5. Let A = U — V) = Us— Vs be two proper weak regular splittings of
the same type of a semimonotone matriz A € BR™ " [f there s an o, 0 < a < 1
such that
U < alls,
then
p(UTW) < p(UlVa) < 1, whenever a=1 and

p(UIVY) < p(UIVa) < 1, whenever 0 < a < 1

Proof. Assume that the given splittings are proper weak regular of tyvpe 1 and
that the condition [/; < al/y holds. Premultiplying I} < al/; hy Af, we obtain
AUy < aATUy, ie.,

(I —uivi) ‘vl < a(1 — ulve) Ui, (3.4)
Sinee L-’,TE"J = (1, there exists a non-negative eigenvector r such that L-’,THI =
;J{L"IH}I. Now, postmultiplying (3.4) by =, we obtain

< all — UGz

— 1

1— p(UTV)

which implies
1 at

<
L= p(UIVi) ~ 1= p(U3Va)
by [1, Theorem 2.1.11]. Hence

(1—a) +ap(UVi) < p(UiVa).
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Now, the required result follows immediately. For the case, when the given split-
tings are proper weak regular with tvpe II the proof is similar. O

Theorem 3.5 i= also true if we replace the condition the same fype by different
types. Note that for the square nonsingular ease, Song [17] proved a similar result
(i.e., a part of Theorem 2.11) but for non-negative splittings (see [17, Definition
2.1 (iv)] for its definition).

3.2, Proper multisplitting theory. We next proceed to discuss proper multi-
gplitting theory. The definition of a proper multisplitting of a rectangular matrix
introduced by Climent and Perea [2] is as follows:

Definition 3.6. [, Definition 2]
The triplet (U, V], Fy)_, is a proper multisplitting of 4 € B™*™ if
(i) A =U; — V) is a proper splitting for each [ = 1,2,.. .. p.

P
(fi) Fy = 0, for each I = 1,2, .., p, is a diagonal n » n matrix, and Z E, =1
=1
where [ is the n x n identity matrix.

A proper multisplitting is called a proper regular multisplitting or a proper wealk
reqular multisplifting of type [, if each one of the proper splitting A = U} — 1) is a
proper regular splitting or a proper weak regular splitting of tyvpe 1, respectively.
Climent and Perea [5] considered the following parallel iterative scheme:

rF = Hak 4+ Gb, k=12 .., (3.5)
P

where (Up, Vi, Ey)l_, is a proper multisplitting of A € R™" H = Z EEL"JT'L"}.
i=1

r
and & = Z E;U7]. Now, we have the following convergence result for a proper
=1

multisplitting which generalizes a result stated in the introduction part of [7] to
rectangular matrices.

Lemma 3.7. Let (U, Vi, Bq)i_, be a proper multisplitting of A € R™*™. Then,
the iterative scheme (3.5) converges to A'h for every ¥ if and only if p(H) < 1.

Proof. We have (I — UJVi)AT = U] for each 1 = 1,2,... ,p. So,
T
¢=> EUl
=1

p
_ E(T — L'-ET H]‘"’ﬂ

=1
P P
=D E - EUV]A
=1 =1
= (I — H)A".
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Suppose that the iterative scheme (3.5) converges to A'h for any initial vector
1°. To prove p(H) < 1, we show that, for any y € R", j:Iim HYy = 0. Let y € B"
—h

be an arbitrary vector, and let = be the unique least squares solution to (3.5).
Define = r — y, and, for k > 1, ¥ = Hr*' + Gb. Then (z*) converges to r.

Also,
r—1* = (Hr + Gb) — (Hr* ' + Gb) = H(x — ),
S0
r—rf=H(z— 2" = HY{z—2*%) = ... = H¥(z — 2") = H*y.
Hence klirﬂ_ H*y = hm HEr — 1% = i:ILTLr‘I — 2) = 0. Hence p(H) < 1 by [5,

Theorem 7.17).
Conversely, let p(H) < 1 and z° be any initial vector. From (3.5). we have
= H2"+ (I +H+-+ H Y

Sinee p(H) < 1, the matrix H is convergent, and IHm H'z" = 0 by [%, Theorem
—i0

7.17]. So (I — H)™! = Z H* by |1, Lemma 6.2.1]. Hence

lim z* = lim H'z" + (z u*) Gbh= (I — H)7'Gb= Ah.

T T
=0

O

The next result is obtained as a corollary in the case of a nonsingular matrix
A.

Corollary 3.8. [7]
Let (U, Vi, Ei)i_, be a multisplitting of A € B™™. Then, the iterative scheme
(3.5) converges to A™'b for every 2° if and only if p(H) < 1.

The next result presented below extends [16, Theorem 1 (a)] to rectangular
matrices which is a characterization of a semimonotone matrix A < ™",

Theorem 3.9. Let (U, Vi, Ey)_, be a proper weak reqular multisplitting of type
Iof A€ BR™" Then, A" = 0 if and only if p(H) < 1.

Proaf. The first part is shown in [%, Theorem 4].

Conversely, since (L7, Vi, E)) h 1 isa proper weak rel:rula,r multisplitting of type
I, we have H > 0 and G = 0. Assume that p(H) < 1. By [{, Lemma 6.2.1],
(I —H)'>0. Then A" = (I - H)"'G = 0. 0

For nonsingular case, we have the following corollary.

Corollary 3.10. | Theorem 1 (a)]
Let (U, Vi, Eq)E, EJF a weak regqular muimphttmg of type I of A € R™*". Then,
A=Y = 0 if and only if p(H) < 1.

In the following result, we introduce an upper bound and a lower bound for
the spectral radius of the iteration matrix H by extending |7, Theorem 3.4].
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