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Abstract: The duty of an electric power distribution company is to ensure a consistent and 

reliable flow of electricity to its customers. Interruptions in the electrical system can negatively 

impact the grid's reliability metrics and its overall efficiency. Therefore, the ability to predict 

outages is essential to minimize downtime and quickly restore service. This study examines the 

occurrence of system failures throughout the initial year of the pandemic in Brazil (2020) and 

assesses the potential of utilizing time series prediction models for outage forecasting. The 

research evaluates the long short-term memory (LSTM) model to produce predictive insights 

that could guide electric utilities in scheduling maintenance crews more effectively. 

Incorporating the wavelet transform with the LSTM model appears to enhance the prediction 

accuracy, making it a promising combination for this research. Comparative analyses indicate 

that this method yields superior prediction accuracy and demonstrates reliability through 

statistical validation.  
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1. INTRODUCTION 

 Electric power grids must operate reliably regardless of weather conditions to ensure stable 

electricity supply to consumers. To maintain operational stability, it's crucial to simulate and 

evaluate the performance of the grid's equipment to identify any disturbances [1,2]. These 

disturbances can lead to power supply issues, voltage variations, and increased fault risks due to 

factors like high surface conductivity or ground contact by conductors, ultimately degrading 

power quality [3]. 

Time series forecasting is a valuable tool for predicting potential failures, aiding maintenance 

decision-making processes in utilities [4]. Notably, failure rates correlate strongly with weather 

conditions; for example, failures are more likely during rainy seasons [5]. Studying these 

variations through time series analysis is vital. 

The application of wavelet transforms, which are effective in managing high nonlinearity in 

time series without significant data loss, supports maintaining essential signal characteristics 

even when filtering high frequencies that could indicate potential failures [6,7]. Combining 

wavelet transforms with deep learning models like Long Short-Term Memory (LSTM) — 

known for addressing the vanishing gradient problem and enhancing time series forecasting — 

creates a robust hybrid approach [8-12]. 
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This study leverages wavelet LSTM, a novel method that fuses wavelet transforms with LSTM, 

to analyze alarm data from a recloser in Santa Catarina, Brazil [13-16]. This hybrid model 

demonstrates improved prediction stability and accuracy over traditional LSTM, providing 

valuable insights into fault occurrences in electrical grids with bare cables, where contamination 

and foreign material contact can cause disruptions. 

The paper progresses with a literature review and data methodology, followed by an exposition 

of the proposed wavelet LSTM approach, results analysis, and concludes with a discussion on 

the implications and future directions of this research. 

 

II. RELATED WORKS 

In electrical distribution systems, faults are defined as anomalies disrupting equipment 

operation within the power grid [17]. Faults are categorized into transient—short-lived 

disturbances resolved by protective devices—and permanent, which persist until defective 

components are replaced [18]. 

Fault diagnosis tools assess the location, size, duration, and impact of these disturbances [19]. 

Advanced methods like Bayesian networks [20], fuzzy logic [21], and Kalman filters [22] are 

employed alongside AI-driven models to enhance fault identification capabilities, which have 

become increasingly vital in the electrical power sector [23]. Particularly, deep learning models 

such as LSTM are favored for their efficiency in fault detection, despite requiring significant 

computational resources due to their complexity [24-27]. 

Image processing techniques using CNN models, such as YOLO and Faster R-CNN, further aid 

in identifying faulty components by recognizing patterns in images of damaged equipment [28-

35]. These models, especially newer versions like YOLOv4, demonstrate high accuracy in fault 

identification within power grids [32-40]. 

Environmental factors, like tree branches contacting uninsulated conductors, commonly cause 

faults in rural grids [41]. Measures like tree pruning near power lines are preventive actions 

taken to mitigate such incidents [42]. Additionally, environmental exposure can lead 

contaminants like dust and salt to accumulate on insulators, increasing leakage currents and the 

likelihood of faults, particularly under high humidity conditions [43-46]. 

Time series forecasting is employed to prepare maintenance teams for potential faults by 

analyzing historical data variations [47,48]. While forecasting multiple steps ahead poses 

challenges due to error accumulation, ensemble learning models are noted for their robust 

performance in multi-step forecasting with less computational demand, making them suitable 

for predicting power system failures [51-58]. 

LSTM models are particularly effective in handling chaotic time series in power systems due to 

their capability to remember long-term dependencies, essential for accurate prediction [59-62]. 

The integration of LSTM with attention mechanisms and modifications for specific applications 

like wind power forecasting further illustrates its adaptability and effectiveness in the sector 

[60-62]. 

 

Table 1. Example of Alarms Registered During the Considered Period 

Day Time Failure Record 

7 January 2020 11:10:45 Current Phase B 

7 January 2020 11:10:55 Current Phase A 

7 January 2020 17:11:30 Current Phase C 
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25 January 2020 14:00:20 Recloser Communication Failure 

07 April 2020 10:05:20 Relay 50/51 (Neutral) 

02 June 2020 17:25:50 Current Phase A 

01 July 2020 14:12:00 Phase Voltage C 

28 August 2020 10:01:00 Neutral Protection 

28 August 2020 12:00:00 Current Phase C 

12 September 2020 03:07:10 Current Phase A 

30 December 2020 14:00:00 Relay 50/51 (Phase A) 

This table shows the type and timing of alarms that occurred during the specified period, 

demonstrating the frequency and nature of electrical faults recorded by the utility company. 

The alarms summarized in Table 1 detail the day, time, and cause of each recorded failure. The 

complete dataset, which includes all documented alarms, is accessible at GitHub (accessed on 

October 21, 2021). 

Failures in electrical systems typically manifest in a nonlinear fashion, making it challenging to 

predict their exact occurrence. Nevertheless, it is feasible to determine periods throughout the 

year that are more susceptible to a higher incidence of failures. This paper reviews the fault 

history for the year 2020—from January 1 to December 31—a leap year with 366 days, 

focusing on the distribution networks in the Lages region of Brazil, utilizing data provided by 

Centrais Elétricas de Santa Catarina (CELESC). 

Figure 1 in the document illustrates the daily sum of alarms related to faults during this period, 

offering a visual representation of the frequency and distribution of failures over the year. 

 

 
3. Wavelet LSTM 

The wavelet LSTM method merges wavelet transform with long short-term memory (LSTM), 

enhancing fault diagnosis in electrical machines and rolling bearings, as demonstrated by Sabir 

et al. [64] and Tan et al. [66]. Its use extends to time series forecasting across various sectors 

including the Internet of Things [67-69], industrial applications [70-72], and sustainability [73]. 

The application process of the wavelet LSTM model involves several steps, illustrated in Figure 

2. Initially, the time series data undergoes noise and nonlinearity reduction via a wavelet filter 

(Step A). This involves decomposing (Step B) and then reconstructing (Step C) the signal. The 

denoised signal is then normalized (Step D), taking into account the variance in the number of 

faults recorded during the period under review. Finally, the LSTM model predicts future trends 
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based on this processed data (Step E). This sequential method enables precise and effective 

forecasting of time series data. 

 
To implement the wavelet transform, the signal initially underwent decomposition via the 

wavelet packet transform (WPT) method, which is designed to capture the energy coefficient of 

the signal, analyzing both high and low frequency components of the spectrum. This 

decomposition process can be represented by 

 
where x(t) is the signal to be decomposed, Y represents the time-based function (mother 

wavelet), and A and B are the scale and displacement parameters, respectively [74]. Upon 

discretization, the high-pass filter g(n) is defined as 

 
where h(n) is the low-pass filter. Correspondingly, the mother wavelet and the scaling function 

F are defined by 

 

 
The Wavelet Packet Transform (WPT) continues to decompose the signal at each iteration using 

the coefficients from prior iterations, resulting in the total number of coefficients being 

dependent on the number of iterations performed. Each coefficient in the wavelet packet is 

characterized by its specific frequency level, allowing for a comprehensive decomposition that 

includes both high and low frequency components of the signal. This method utilizes a tree 

structure, derived from the approximation decomposition coefficients, to ascertain an optimal 

binary value. An illustration of this tree structure used for wavelet decomposition is showcased 

in Figure 3. 
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In the optimized structure, certain paths, specifically paths 1, 2, and 1, 3, are excluded, leading 

to a more streamlined decomposition process. Following the optimized wavelet packet 

decomposition, the signal is reconstructed based on the selected nodes from the binary wavelet 

packet tree. This reconstructed filtered signal then serves as the basis for generating a time 

series, which is subsequently utilized for evaluating LSTM forecasts. 

LSTM (Long Short-Term Memory) is a type of recurrent neural network characterized by its 

feedback connections, enabling the model to retain information from distant data points. To 

perform time series forecasting, the LSTM model begins its predictions from D samples, 

leveraging its memory capability to enhance forecast accuracy. 

 

4. Analysis of Results 

The initial evaluation focused on analyzing the time series forecasting performance in relation 

to the distribution of data between training and testing phases within the neural network. This 

aspect is crucial as it helps determine the minimal dataset size required effectively to train the 

model. The optimal outcomes from this analysis are emphasized in bold within this section. 

The findings are summarized in Table 2, which illustrates varying training ratios ranging from 

50% to 90%. The complementary percentage to each training ratio was allocated for testing 

purposes, with no separate validation set involved in this particular assessment. 

Using an 80% training and 20% testing data split yielded the most favorable results, achieving 

the best RMSE (Root Mean Square Error) and R^2 (coefficient of determination) values. 

Consequently, this ratio was adopted for subsequent analyses. As illustrated in Figure 4, 

predicting the data presented significant challenges due to the nonlinear nature of the time 

series. This complexity was particularly evident in instances where multiple failures occurred 

within a brief timeframe. 
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5. Conclusions 

Predicting faults within an electrical distribution system is crucial for maintaining reliable 

power grid operations. By analyzing time series data, it is possible to identify periods with 

increased failure rates, which can inform more effective mitigation strategies. Time series 

forecasting allows electric utilities to anticipate faults, enabling them to develop proactive 

measures to address potential issues. The task of predicting failures is challenging due to 

significant seasonal fluctuations in failure rates, particularly during the rainy seasons. 

Traditional forecasting models proved inadequate for handling these variations, necessitating 

the development of a hybrid model to better address the complexities involved. The wavelet 

LSTM model outperformed the standard LSTM in all conducted analyses, demonstrating 

superior results in statistical assessments and proving to be well-suited for this study. This 

model provides reliable failure prediction indicators that can assist in the efficient organization 

of maintenance crews, thereby reducing the time to respond to critical failures. The basic LSTM 

model, while potent for chaotic time series, struggled without additional modifications due to 

the sharp fluctuations in failure data. Incorporating a wavelet filter into the LSTM model 

enabled effective smoothing of the time series, enhancing the prediction accuracy beyond that 

of other advanced methods like ensemble learning, GMDH, and ANFIS. Future research should 

focus on differentiating between types of failures, such as those caused by direct contact with 

the grid versus leakage currents. Detailed analysis of the most frequent failure types and 

strategies to prevent them presents a promising avenue for further investigation. 
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