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Abstract 

The voltage control interactions between recently installed PV inverters and previously deployed 

on-load tap-changer (OLTC) transformers become increasingly important as photovoltaic (PV) 

adoption increases steadily. Current approaches frequently depend on a decision-making 

algorithm to fully assume control of both inverters and OLTC in order to achieve coordinated 

voltage regulation. Consequently, in order to be under the new algorithm's control, OLTC must 

relinquish its independent tap switching logic and carry out the necessary changes. In this 

research, a soft coordination framework is suggested with the goalof bridging this gap. In 

particular, OLTC is permitted to retain its independent control state during tap switching, and the 

decision-making algorithm will only directly regulate the Var output of inverters. The voltage 

control problem should first be represented as a memory-based Markov decision process (MDP) 

in order to realise such soft coordination. Based on this foundation, the current soft actor-critical 

algorithm (RSAC) is proposed for Index Terms—Coordinated voltage control, distribution 

systems, OLTC transformer, photovoltaic (PV). 

 

I. Introduction 

The increasing integration of photovoltaic (PV) technology into distribution systems presents 

both opportunities and challenges for reducing carbon emissions. Issues with voltage violations 

are now the primary barrier to increased PV power integration in distribution networks. 

On-load tap-changer (OLTC) transformers installed upstream are usually used as tap switches in 

conventional distribution systems to regulate system voltage. Line drop compensation (LDC) is 

one of the most often used OLTC tap control logics. To be more precise, OLT uses an analogue 

circuit to simulate the distribution line's voltage drop. 

  Consequently, if the predicted voltage is outside of the permitted range for a longer 

period of time than the time delay, the OLTC can sense remote voltage variations based on local 

measurements and adapts its tap position accordingly [1, 2]. There are reports of additional 

OLTC tap control logics in [3, 4], both with and without remote monitoring. Originally intended 

to adjust for voltage changes brought on by slow load variations, these commonly used OLTC 

transformers may still be effective if PV penetration is low[4,5].However, because of significant 

reverse power flow [6] and unequal PV power distribution [7], OLTC transformers alone would 

not be able to effectively handle the overvoltage issue as PV penetration increases over time. 

Fast swings in PV power can also lead to excessive tap operations of OLTC transformers [8], 

which speeds up the ageing process of the devices. 
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Voltage control is made more flexible by inverters' ability to seamlessly modify their Var output 

in real time, as opposed to OLTC transformers' usually poor response times and discontinuous 

tap operations. Coordination of voltage control techniques for distributed PV inverters has been 

attempted to be designed. To optimize PV inverters' Var output for real-time voltage control, for 

instance, a distributed method resilient to communication asynchrony was presented in [9]. For 

unbalanced distribution systems, an inter-phase coordinated voltage control technique was 

developed after the Volt-Var interaction between phases was examined in [10]. Inverter clusters' 

coordinated voltage regulation is also covered by, but not limited to, [11–13]. 

In most situations, PV inverters are installed in distribution systems whose voltage is currently 

under the regulation of previously deployed OLTC transformers. Existing research for 

coordinated voltage control with heterogeneous devices can be mainly divided into two 

categories: 

        1. Coordinating according to rules. For heterogeneous devices, a variety of coordination 

principles have been developed to accomplish coordinated voltage control. For instance, in [14], 

the permissible voltage range was appropriately split into a number of zones, with OLTC or 

inverters taking appropriate corrective action based on each zone. PV inverters and a battery 

energy storage system (BESS) were intended to participate in voltage adjustment temporarily in 

[15].The moment an OLTC tap operation was initiated, they decreased their involvement in 

voltage management. This meant that there was no overuse of the BESS or PV inverters. In[16], 

a coordination plan for BESS and OLTC control was put forth. To initiate the OLTC tap, the 

weighted average of the estimated voltage across all buses was used as the control signal 

 

2. cooperation based on algorithms. In order to coordinate heterogeneous devices in voltage 

control, techniques based on both reinforcement learning (RL) and optimization have been 

developed. on [19], for instance, a distribution system voltage control problem was framed 

within an RL framework. In this scenario, deep Q-net (DQN) collaboratively dispatched 

inverters, capacitor banks (CBs), and OLTC on the same time scale. In [20], a multi-timescale 

co-optimization model was developed as a mixed-integer second-order cone programme, taking 

into account the varying response speeds of various devices. Network reconfiguration, OLTC, 

and inverters (battery and PV) were scheduled on a daily, hourly, and 20-minute basis, 

respectively. Similar to this, in [21], a two-layer cost-effective control technique was used to 

coordinate OLTC, CBs, PVs, and mobile energy storage systems (MESS) for both cost 

minimization and voltage management. Refer to [22, 23] for additional information Even while 

rule-based coordination solutions are useful in regulating voltage, they frequently require 

empirical design. It is a more versatile method of coordinating heterogeneous devices through 

RL-based algorithms or optimization. The majority of RL-based or optimisation techniques need 

direct device control (also known as hard coordination techniques). Therefore, in order to be 

controlled by a new algorithm, previously installed OLTC transformers that have already been 

operating efficiently for many years must fully reverse their current operation rules and carry out 

the necessary upgrades. It is important to note that these OLTC modifications would increase 

prices and complicate field implementation. Moreover, the local power provider owns the OLTC 

transformer. To bridge this gap, a learning-based soft coordination control method that fully 

respects existing operation rules of previously deployed devices is proposed in this paper, with 

contributions summarized as follows: 

1) Soft coordination framework: An innovative control framework that aims to “softly” collaborate 

inverters with OLTC transformers for system voltage regulation is proposed in Section II. 
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Different from most hard coordination methods that rely on the direct control of all devices, in 

our soft coordination framework, only inverters’ Var output is controlled by a well-trained 

proxy model,and OLTC is allowed to maintain its autonomous control state for tap switching. 

The rationale behind the soft coordination lies on the fact that OLTC’ existing autonomous 

control logic is a voltage-dependent control rule. As a result, through coupled system voltage, it 

is possible to indirectly control OLTC’ tap position as long as the system voltage profile can be 

elaborately shaped by inverters’ Var compensation. 

2) Memory-based Markov decision process: To realizethe soft coordination, the voltage control 

problem should first be modelled as a Markov decision process (MDP) before the design of the 

corresponding RL algorithm. In this paper, the OLTC follows its existing “LDC + time delay” 

control logic for tap switching, namely OLTC adjusts its tap position according to its memory 

of voltage variations over a past period of time. 

                                                                                                                                                 

 As a result, the standard MDP where state transitions only depend on the action and 

current system states cannot fully capture the characteristics of OLTC’s tap behavior. To cater 

for this time series-coupled tap switching mechanism of OLTC, the standard MDP is extended to 

the memory-based MDP in Section III. Correspondingly, the proxy model makes decisions 

according to the historical trajectory (time series-coupled information) it has observed instead of 

only current system states. 

 

       3) Recurrent soft actor-critic method: The RSAC algorithm, which is described in Section 

IV, can be used to train the proxy model with episodes that are found in memory-based MDPs. 

In contrast to conventional actor-critic based algorithms, our proposed RSAC algorithm's actor 

network (proxy model) is a deep neural network (DNN) equipped with a Gated Recurrent Unit 

(GRU). This network is specifically designed to process time series-coupled data efficiently and 

make decisions based on historical trajectory. Consequently, the proxy model can effectively 

learn the time series-based tap switching features of OLTC using our proposed RSAC algorithm, 

and a well-trained proxy model is capable of making informed judgements in memory-based 

MDPs to accomplish the soft coordination.. 

 

II.  Soft Coordination Framework 

A. Ta p Control Logic of  OLTC Transformers 

OLTC transformers play a dominating role in voltage regulation in most distribution systems. 

Following its own autonomous control rule, an OLTC transformer can adaptively adjust its 

tapposition to compensate system voltage variations. Fig. 1 demonstrates one of the most popular 

tap control logics applied on OLTC transformers in the industry. 

As shown in Fig. 1 a), an internal model called LDC circuit is used to match the distribution line 

impedance. Distribution system operators (DSOs) can set 𝑅 and𝑋 values in the LDC circuit 

through the load-center method or voltage-spread method [1] to adjust the compensation. With 

the LDC circuit, a downstream voltage level𝑉𝑒𝑠𝑡can be estimated according to detected voltage 

𝑉0and current 𝐼0on the secondary side of OLTC as 

𝑉𝑒𝑠𝑡=𝑉0−𝐼0(𝑅+𝑗𝑋), (1) 

 

            We will compare this predicted VCO with the voltage control target VCO and the dead 

band Vd. When 𝑉𝑒𝑠𝑡 leaves its permitted range [𝑉𝑡𝑔 −Δ𝑉𝑑𝑏,𝑉𝑡𝑔 +Δ𝑉𝑑𝑏], the OLTC 

transformer's timer begins to count. Temporary voltage breaches, as seen in Fig. 1b), will not 
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cause tap switches to activate since the OLTC timer will be terminated once V is back within its 

permitted range. Simultaneously, the timer reading 𝑇𝐷𝑡exceeds the setting of time delay 𝑇𝑑. In 

the event that 𝑉𝑒𝑠𝑡is larger (lower) than 𝑉𝑡𝑔 +Δ𝑉𝑑𝑏 (𝑉𝑡𝑔 − Δ𝑉𝑡𝑏), OLTC will step down (up) 

its tap position𝑍𝑡. OLTC transformers frequently employ this "LDC + time delay" control 

algorithm for adaptive tap switching. In this case, as shown in Fig. 2b), OLTC tap operations will 

occasionally be initiated, which modifies the inverters' operating points and lessens the load of 

Var compensation on them. The OLTC transformer, which was initially intended to compensate 

for slow changes in load, must directly face the fast-fluctuating PV power if inverters do not 

participate in voltage regulation at all. This will result in excessive OLTC tap operations, as 

shown in Fig. 2c), and make a transformer more susceptible to damage. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A typical distribution system with an OLTC transformer for voltage regulation. a) LDC 

circuit, b) Tap operation 

 

B. Interaction of Heterogeneous Devices in Voltage Control 

Interactions between inverters and OLTC in system voltage control are inevitable because of 

linked system voltage, which allows the upstream OLTC transformer to sense the voltage 

correction from the inverters' Var output. A distributed inverter may instantly modify its Var 

output, which allows it to accurately shape the voltage profile of the system. As a result, an 

OLTC that adheres to its "LDC+ time delay" rule is indirectly controlled by the inverters. For 

instance, inverters will increase their voltage correction to stop the OLTC timer before it reaches 

the time delay 𝑇𝑑 in order to prevent a tap switch; On the other hand, inverters must reduce their 

voltage correction and permit a specific degree of voltage violation hazards to persist longer than 

the OLTC time delay 𝑇𝑑 in order to activate a tap switch. 

Fig.2 demonstrates distinct changes of OLTC behaviors 

using various Var output techniques for inverters. No OLTC tap switch will be activated if 

inverters are built to maintain a constant point of common coupling (PCC) voltage by Var 

compensation, as shown in Fig. 2 a). Consequently, only the inverters' Var compensation will be 

able to control PV power-induced overvoltage for an extended period of time, leaving the 

inverters susceptible to Var saturation. Significant reactive power flow will also result in further 
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system line loss. Inverters that loosen their control over the system voltage—for instance, by 

applying Volt-Var droop curves—can cause changes in PV power, which will cause the PCC 

voltage to fluctuate.  

 

 
Fig.2. Interactions of inverters and OLTC in system voltage regulation. 

 

C. Hard Coordination Versus Soft Coordination 

As discussed in Section II-B, OLTC under its autonomous   operation state has potential to be 

indirectly controlled by inverters’ Var output. Inspired by this idea, an innovative soft 

coordination framework is proposed in this paper.The traditional "hard coordination" methods 

are in opposition to the concept of "soft coordination" as presented in our manuscript. The 

coordination algorithm must seize control of every device involved in hard coordination. 

Specifically, an optimization or learning-based algorithm determines the outputs of every device 

in real time. On the other hand, with soft coordination, a subset of devices is directly controlled 

by the coordination algorithm, but the remainder devices are permitted to continue operating 

independently. Particularly, in this work, the trained proxy model only instructs distributed 

inverters to directly regulate their Var output, whilst the OLTC modifies its tap position in 

accordance with its own "LDC + time delay" control logic (self-governing status). Notably, even 

though the coordination approach does not directly regulate the tap position of an OLTC as it 

does in hard coordination, coordinated voltage regulation, and Realization of Soft Coordination 

in Voltage Control 

D. Realization of Soft Coordination in Voltage Control 

To realize such a soft coordination mechanism, the voltage control problem is modeled as a 

memory-based MDP, where the OLTC-equipped distribution system is regarded as the 

environment in the context of RL, and the proxy model 

controlled inverters will output reactive power (action 𝐴𝑡) to interact with the environment, as 

shown in Fig. 3. The proxy model is a GRU-equipped DNN, and its inputs in time step 𝑡 are 
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current system states 𝑆𝑡and previous action 𝐴𝑡−1 . According to the historical trajectory 

𝐾𝑡,namely a series of(𝑆𝑡,𝐴𝑡−1)input in different time steps 

 

 
 

1. Actions 

Within our designed soft coordination framework, the Var outputs of inverters are decision 

variables(actions). Therefore, at time instant𝑡, the action𝐴𝑡∈ 𝒜 is the set of the Var output of PV 

inverters𝑄𝑝𝑣,namely𝐴=𝑄𝑝𝑣,and it supper and 

Lower limits are𝑄𝑝𝑣and−𝑄𝑝𝑣,respectively. 

 Proxy model are action probability distribution𝜋𝜙(⋅|𝐾𝑡), 
 

2.Mark ov States  

According to the OLTC operation mechanism introduced in Section II-A, the voltage of all buses 

𝑉𝑡, tap position 𝑍𝑡, and the timer reading 𝑇𝐷𝑡(which indicates how long the over/under voltage 

risk has lasted) are necessary Markov states in depicting the OLTC behavior in its voltage 

control process. In addition, the system voltage is also influenced by active and reactive power 

flows. Therefore, the complete Markov states 

𝑆𝑡∈𝒮 of the distribution system voltage control are given as: 

𝑆=(𝑃𝑙𝑜𝑎𝑑,𝑄𝑙𝑜𝑎𝑑,𝑃𝑝𝑣,𝑉,𝑍,𝑇𝐷), (2) 

  

 3 Rewards 

 The soft format we designed has two control objectives: a)Eliminate voltage 

interruptions, b) Reduce line losses. That's all 

Note that only excessive OLTC operations should be performed[25] Decay and there is no need 

to reduce their numberOpen the OLTC faucet. Line loss reduction can be improved Operational 

efficiency of the distribution system, especially mine 

PV-rich systems require additional reactive power Suppression of mutations. Usually additional 

reaction effects. It causes more losses in the system lines. Like most learning-based algorithms, 

the penalty framework Added bonus feature to calculate possible systems Power cut Especially 

in the event of a power cut Among all buses, the reward function is modeled as (3) for 

quantization System voltage deviation. Otherwise, the reward function is As shown in Equation 

(4), try to minimize the system line loss. According to this Reward Design The agent model will 

receive negative rewards if Its action will cause any bus to lose power. more than On the other 

hand, if the system can get positive rewards The voltage is within the allowed range and the bus 

is lost This is less than if no  action had been taken 
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𝑅𝑡 = 𝑀 ∑𝑗∈𝒩[𝑚𝑎𝑥(𝑉𝑡 𝑗 − 𝑉, 0) + 𝑚𝑎𝑥(𝑉 − 𝑉𝑡 𝑗 , 0)] (3) 

𝑅𝑡 = 𝜆(𝑃𝑡 𝑙𝑜𝑠𝑠,0 − 𝑃𝑡 𝑙𝑜𝑠𝑠), (4) 

   

MEMORY-BASED MD SYSTEM VOLTAGE CONTROL 

 Tuple of Memory-based MDP in System Voltage Control 

The voltage control problem should be first depicted as MDPs before the further design of the 

RL algorithm. For examples in[19,22],based on the standard MDP,DQN Algorithms are 

established for inverters’ Volt-Var control[12], the adversarial MDP was proposed for 

conducting adversarial learning, through which proxy model-controlled inverters are able to 

provide robust Volt-Var control against the model mismatch. Considering the time series-

coupled tap switching mechanism of OLTC, a memory-based MDP with the tuple (𝒜,𝒮,ℛ,𝒫) is 

used to mathematically model the system State transitions in the coordinated voltage regulation 

 

𝑅𝑡 = 𝑀 ∑𝑗∈𝒩[𝑚𝑎𝑥(𝑉𝑡 𝑗 − 𝑉, 0) + 𝑚𝑎𝑥(𝑉 − 𝑉𝑡 𝑗 , 0)] (3) 

𝑅𝑡 = 𝜆(𝑃𝑡 𝑙𝑜𝑠𝑠,0 − 𝑃𝑡 𝑙𝑜𝑠𝑠), (4) 

 

where 𝑅𝑡 ∈ ℛ is the reward; 𝑀 < 0 represents the penalty coefficient of voltage 

violations;𝑉and𝑉 are upper and lower limits of system voltage, respectively;𝑉𝑗denotes the 

voltage of bus 𝑗 at time instant 𝑡; 𝒩 is the set of all buses; 𝜆 > 0 represents the incentive factor; 

𝑃𝑙𝑜𝑠𝑠represents the line loss if action𝐴𝑡 is taken at time instant 𝑡,and𝑃𝑙𝑜𝑠𝑠,0corresponds to  

problem, and 𝒜, 𝒮,ℛ, and𝒫 represent the sets of all possible actions, Markov states, rewards, 

and the probability distribution of state transition, respectively  

4) Probability Distribution of State Transition 

The system state  will transition from 𝑆𝑡 to𝑆𝑡+1with a reward 𝑅𝑡 after an action 𝐴𝑡 is taken at 

time instant 𝑡. Such a state transition obeys a probability distribution 𝜌 ∈ 𝒫, denoted as below 

(𝑆𝑡+1 , 𝑅𝑡 )~𝜌(⋅ |𝑆𝑡 , 𝐴𝑡 ), (5)  

which models the impact of stochastic disturbances (e.g., load  variations) on system state 

transitions. 

 

  

B. Historical Trajectory and Decision Making 

 

Current system states are not sufficient for making  appropriate decisions, since OLTC adjusts its 

tap position depending on its memory of voltage variations over a past period of time, as 

demonstrated in Section II-A. To address this issue, the historical trajectory 𝐾𝑡 ∈ 𝒦, defined as 

in (6), is  used to support proxy model for its decision making, in order to successfully grasp the 

characteristics of OLTC’s tap operation in a time series. 

𝐾𝑡 = (𝑆0 , 𝐴0 , 𝑆1 , 𝐴1 , … , 𝑆𝑡−1 , 𝐴𝑡−1 , 𝑆𝑡), (6) 

where the 𝐾𝑡 is a series of states and actions obtained from inverter-environment interactions up 

to now, and 𝐾𝑡is comprised of 𝐾𝑡−1and (𝐴𝑡−1,𝑆𝑡). It is worth noting, (𝐴𝑡−1,𝑆𝑡) is the input of 

the proxy model at time instant 𝑡, while the proxy model makes decisions according to the whole 

historical trajectory𝐾𝑡. The proxy model is a neural network in nature, which establish es the 

mapping from the historical trajectory𝐾𝑡to the action probability distribution denoted as 

𝜋𝜙(⋅|𝐾𝑡). Finally, the action 𝐴𝑡 is obtained through random sampling from the probability 

distribution, as in (7): 

𝐴𝑡~𝜋𝜙(⋅|𝐾𝑡), (7) 
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In the context of RL, 𝜋𝜙is called as the action policy of the proxy model, and it will be further 

introduced in Section IV-A. The action distribution𝜋𝜙(⋅|𝐾𝑡) will converge to its optimal value 

with very small variances after sufficient training. 

C. MDP Considering Entropy 

To sufficiently explore the action space and avoid premature convergence, the maximum entropy 

learning technique is adopted in this paper. Here in, the entropy of the Probability 

distribution𝜋𝜙(⋅|𝐾𝑡)is denoted as ℋ(𝜋𝜙(⋅|𝐾𝑡)), And larger ℋ(𝜋𝜙(⋅|𝐾𝑡)) means a more random 

selection of action from its distribution 𝜋𝜙(⋅ |𝐾𝑡). 
 

Different from standard deep reinforcement learning (DRL) that aims to maximize the 

expectation of accumulated rewards  

𝔼𝜏~𝜋𝜙 ∑𝑁 𝑛=0 𝛾 𝑛𝑅𝑡+𝑛, in maximum entropy learning, an entropy term [26] is added in the 

state value function as: 

   

𝑉 𝜋𝜙(𝑘𝑡) = 𝜏~ 𝔼 𝜋𝜙 {∑𝑁 𝑛=0 𝛾 𝑛 [𝑅𝑡+𝑛 + 𝛼ℋ (𝜋𝜙(⋅ |𝐾𝑡+𝑛 ))]|𝐾𝑡=𝑘𝑡 } . (8) 

Herein, 𝑉 𝜋𝜙(𝑘𝑡) as it is shown in (8) represents the expected value of the accumulated rewards 

and entropy in the future trajectory if the historical trajectory 𝐾𝑡 = 𝑘𝑡 and policy 𝜋𝜙 is applied 

for future action making; 𝜏 represents future trajectories following the action policy 𝜋𝜙 ; 𝑁 

denotes the length of trajectories; 𝛾 ∈ (0,1) is the discount factor; 𝛼 > 0 is a temperature 

parameter used to balance the Exploration and Exploitation during the learning process.  

Correspondingly, the state-action value function 𝑄 𝜋𝜙 is expressed in (9): 

𝑄 𝜋𝜙(𝑘𝑡 , 𝑎𝑡) = 𝜏~ 𝔼 𝜋𝜙 {∑𝑁 𝑛=0 𝛾 𝑛𝑅𝑡+𝑛 + 

𝛼 ∑𝑁 𝑛=1 𝛾 𝑛ℋ (𝜋𝜙(⋅ |𝑘𝑡+𝑛 )) |𝐾𝑡=𝑘𝑡 ,𝐴𝑡=𝑎𝑡 }. (9) 

 

RECURRENTS OF TACTOR- CRITICAL  ALGORITHM 

 

Structure of the RSAC Algorithm 

To maximize the total rewards that it can obtain, our suggested RSAC approach must be used to 

train the proxy model enough. The RSAC algorithm is based on an enhanced version of the 

actor-critic algorithm [26], which can handle time series-coupled data better. Traditional actor-

critic based algorithms have been applied in distribution system voltage regulation [12, 27, 28]. 

The RSAC algorithm consists of an actor network and a critic network, as the name implies. 

Actions are made by the actor network, and then they are quantitatively assessed using Q values 

by the critic network. Importantly, the actor network in the RSAC method is the proxy model, 

which determines the Var output of inverters. For this reason, it will be referred to as Actor 

Network 

As shown in Fig. 3, the actor network (proxy model) is established as a GRU-equipped DNN, 

which is designed to make proper actions (Var compensation) for inverters according to a series 

of (𝑆𝑡,𝐴𝑡−1) it has observed (namely, the historical trajectory 𝐾𝑡). Herein, GRU is a type of 

recurrent neural networks (RNNs) with a gating mechanism [29] Such  

refinement of RNN includes an update gate and a reset gate, which determine what information 

is allowed through to the output, and it can be trained to retain information over time. With this 

simulated ability to remember information, GRU is used in this paper to process the time-series 

coupled variablelength historical trajectory 𝐾𝑡 as: 

 

𝐻𝑡=𝑔𝜙(𝑆𝑡,𝐴𝑡−1,𝐻𝑡−1)=𝑔𝜙(𝐻 ̃𝑡), (10) 
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 Where𝑔𝜙𝑟 denotes the GRU mapping rule, and 𝜙𝑟represents its network 

parameter.𝐻𝑡represents the GRU hidden state at time instant𝑡, which will be updated at each 

time step; (𝑆𝑡,𝐴𝑡−1,𝐻𝑡−1)is denoted by𝐻 ̃𝑡for ease of description. Through recursive 

computations as presented in (10), the variable-length historical trajectory 𝐾𝑡as in (6) is 

projected into a fixed-dimension𝐻 ̃𝑡.The updated hidden state𝐻𝑡is then transferred to a DNN a 

sits input(referringtoFig.3),and its output is the probability distribution of actions. In this paper, 

possible actions 𝐴𝑡 ∈ ℝ1×𝑁𝐴are designed to obey normal distributions, and correspondingly the 

outputs of DNN are 𝜇𝑡 ∈ ℝ1×𝑁𝐴and𝜎𝑡 ∈ ℝ1×𝑁𝐴representing the sets of expectations and 

variances of these distributions, respectively: 

(𝜇𝑡, 𝜎𝑡) = 𝑓𝜙𝑑(𝐻𝑡), (11) 

Where𝑁𝐴 is the dimension of action𝐴𝑡;𝜙𝑑 means the DNN parameter; 𝑓𝜙𝑑 denotes the DNN 

mapping rule. So far, the GRU-DNN based actor network has been parameterized as: 

(𝜇𝑡 , 𝜎𝑡 ) = 𝑓𝜙𝑑 [𝑔𝜙𝑟 (𝐻𝑡)] = 𝜋𝜙(𝐻𝑡), (12) 

where 𝑓𝜙𝑑 [𝑔𝜙𝑟 (∙)] is denoted by 𝜋𝜙 with 𝜙 = [𝜙𝑟 ,𝜙𝑑], and therefore 𝜋𝜙 represents actor 

network’s action policy characterized by 𝜙. According to normal distributions given by (12), 

action 𝐴𝑡 can finally be obtained through random  sampling as: 

𝐴𝑡 = ℙ(𝜇𝑡 + 𝜀𝑡⨀𝜎𝑡 ), (13) 

where 𝜀𝑡 is a random variable obeying the standard normal distribution 𝒩(0,1), and ⨀ is the dot 

product operator. Since  

inverters’ Var outputs (i.e., action 𝐴𝑡 ) have physical boundaries, ℙ represents the projection 

from infinity to the interval [−𝑄𝑚𝑎𝑥 𝑝𝑣,𝑄𝑚𝑎𝑥 𝑝𝑣 ].  

2) Critic Network The actor network (with policy 𝜋𝜙 ) takes an action 𝐴𝑡 according to known 𝐻𝑡 
at time instant 𝑡, and the value of this  

action, namely the future rewards and entropy that the actor network will totally obtain after 

action 𝐴𝑡 is taken is expressed as the state-action value function 𝑄 𝜋𝜙 in (9). In this paper, this 

state-action value function 𝑄 𝜋𝜙 is approximated by a neural network 𝑄𝜃 𝜋𝜙 with parameter 𝜃 

as 

𝑄 𝜋𝜙 ≈ 𝑄𝜃 𝜋𝜙 (𝐻𝑡 , 𝐴𝑡), (14) 

 

where 𝑄𝜃 𝜋𝜙 is called critic network in the RSAC algorithm. A well-trained critic network 𝑄𝜃 

𝜋𝜙 can properly output Q values to evaluate actions, and a larger Q value means a better action.  

3) Value Network  

Similarly, the state value function 𝑉 𝜋𝜙 in (8) can be approximated by the value network 𝑉𝜓 𝜋𝜙 

with parameter 𝜓 as: 

𝑉 𝜋𝜙 ≈ 𝑉𝜓 𝜋𝜙 (𝐻𝑡). (15) 

   

 4) Replay Buffer  

The latest 𝑁𝑏 sets of actor network’s experiences (called episodes), which are a series of tuples ( 

𝐻𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1 ) obtained from inverter-environment interactions, are stored in the replay 

buffer 𝒟 . A mini-batch of episodes will be randomly sampled from the replay buffer and used 

for each  

round of parameter updating. 

B. Network Parameter Updating  

 

In our proposed RSAC algorithm, parameters of the actor network (𝜙) and the critic network (𝜃) 

are alternately and iteratively updated by strategies of Policy Evaluation and Policy 
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Improvement, respectively, while the value network (𝜓) works as an auxiliary in parameter 

updating. Through Policy Evaluation strategy, the critic network 𝑄𝜃 𝜋𝜙 with updated 𝜃 could 

have better performance inaction value estimation for a given policy 𝜋𝜙. The improved critic 

network 𝑄𝜃 𝜋𝜙 will further be used to update the current actor network (𝜙 ′ ) through Policy 

Improvement strategy, and the updated actor network (𝜙) will have better performance in action 

selection. Namely, actions made by updated policy 𝜋𝜙 tend to have larger Q values compared 

with that of the original policy 𝜋𝜙′ . 

1) Critic Network Updating Through Policy Evaluation Following the definition of state value 

function 𝑉 𝜋𝜙 and state-action value function 𝑄 𝜋𝜙 as in (8) and (9) respectively, the following 

Bellman equations can be derived: 

 
where 𝑄𝜃 𝜋𝜙 (𝐻𝑡 , 𝐴𝑡) is expressed as a function of 𝑉𝜓 𝜋𝜙 (𝐻𝑡+1) in (16), and 𝑉𝜓 𝜋𝜙 (𝐻𝑡) can 

also be transferred to a function of 𝑄𝜃 𝜋 

𝜙 (𝐻𝑡 ,𝐴𝑡) as in (17). It is worth noting, the variable-length historical trajectory 𝐾𝑡 as the input 

of 𝑉 𝜋𝜙 and 𝑄 𝜋𝜙 in (8) and (9) has beenprojected into a fixed-dimension 𝐻𝑡 in the state value 

network 𝑉𝜓 𝜋𝜙 and critic network 𝑄𝜃 𝜋𝜙 . In addition, the entropy 

 ℋ (𝜋𝜙(⋅ |𝐻𝑡)) in this paper is defined as:  

ℋ (𝜋𝜙(⋅ |𝐻𝑡)) = − 𝐴𝑡~ 𝔼 𝜋𝜙 {𝑙𝑜𝑔 𝑃𝜋𝜙 (𝐴𝑡 |𝐻𝑡)}, (18)  

where 𝑃𝜋𝜙 (𝐴𝑡 |𝐻𝑡) represents the probability density of action 𝐴𝑡 in the probability distribution 

𝜋𝜙(⋅ |𝐻𝑡). The Bellman Equations (16) and (17) finally yield two loss functions as follows:  

 

 
 where (𝐻 ̃𝑡 ,𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1)~𝒟 means that the tuple (𝐻𝑡 ,𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1) is randomly sampled 

from the replay buffer 𝒟, and so does 𝐻𝑡~𝒟. It is worth noting that a target state value network 

𝑉𝜓 𝜋𝜙 rather than the state value network 𝑉𝜓 𝜋𝜙 is used in (19) to improve the stability of the 

algorithm.  
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𝜃←𝜃+ 𝜂∇𝜃𝐽𝑄(𝜃) (21) 

𝜓←𝜓+ 𝜂∇𝜓𝐽𝑉(𝜓). (22) 

                                                       𝜓 ← 𝛽𝜓 + (1− 𝛽)                                                                . 

(23)  

 

Actor Network Updating Through Policy Improvement  After sufficient training, the critic 

network 𝑄𝜃 𝜋𝜙 can  

properly output 𝑄 values for action estimation, where a larger 𝑄 value indicates a better action. 

To improve the performance  

of the actor network, one direct idea is to build such a probability distribution, that actions with 

larger 𝑄 values have  

larger probability densities. Therefore, based on the current policy 𝜋𝜙′ and its critic network 𝑄𝜃 

𝜋𝜙′ , the target probability  

distribution 𝜋𝜙(⋅ |𝐻 ̃𝑡) of the actor network is aimed to be shaped as: 

 

 
The Kullback-Leibler (KL) divergence is used to measure the deviation between two 

distributions. Correspondingly, the  

training objective is designed to minimize the KL divergence between 𝜋𝜙(⋅ |𝐻𝑡) and its target 

distribution as: 

 
where 𝐷𝐾𝐿 represents the KL divergence between two distributions. Since the value of ∫ 𝑒𝑥𝑝 

{𝑄𝜃 𝜋𝜙′ (𝐻𝑡 , 𝐴𝑡)/𝛼} 𝑑𝐴𝑡 in (25) Is independent to the selection of action 𝐴𝑡 , it can be denoted 

as 𝐹𝜃 𝜋𝜙 (𝐻𝑡) for ease of description. According to (25), the loss function is given as : 

 

 
By substituting (13) into (26), we can equivalently express the loss function as : 
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Finally, the parameter of the action network can be updated through the mini-batch stochastic 

gradient descent  

Method : 

 

 
 

C. Training Procedure  

The procedure of network training (i.e., actor network 𝜋𝜙, critic network 𝑄𝜃 𝜋𝜙 , value network 

𝑉𝜓 𝜋𝜙 and target network 𝑉𝜓 𝜋𝜙) is summarized as below : 

 

 
 

V. CASE STUDIES:  

A. IEEE 33-Bus Balanced Distribution System 

1. Test System Introduction A modified IEEE 33-bus distribution system with a 16-step OLTC 

transformer and 7 distributed Pv inverters, as in Fig. 4, is used for case studies. The maximum 

active and reactive power of PV inverters on different buses are also shown in this figure. 

Considering the system peak load 3.8MW, the total PV With a maximum installation capacity of 

4.6 MW, the modified IEEE 33-bus system is a PV-rich distribution network. The OLTC 

transformer, as described in Section II-A, uses the control parameters listed in Table I to regulate 

system voltage in accordance with its LDC rule. Fig. 5 shows the active and reactive load 

profiles for the entire day. In this paper, the system voltage allowed range is specified at 

0.95p.u.~1.05p.u. It is important to note that Bus 15 is the bus with PV inverters that is located 

the farthest away, making it the most susceptible to overvoltage issues when reverse power flow 

happens. In order to examine the effectiveness of various approaches for voltage regulation, only 

the voltage profiles of Bus 15 are shown in this. 
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Open DSS is used as the programming environment for the 33-bus distribution system model, 

and   Py Torch [30] is used to build the suggested RSAC algorithm in Python for network 

training. By using co-simulations between Open DSS and Python, training data is produced. In 

particular, the environment is altered by the actor network created in Python, changing the power 

flow outcomes of Open DSS in the process. The rewards and revised system states are then 

returned to Python. The RSA algorithm's hyper parameters are displayed in Table II.. 

1) Training Process 

Fig. 6 shows the episode average reward value during the training process of successive 1500 

episodes. Initially, in the early learning phase, the action policies lead to negative rewards due to 

limited positive learning experiences and un optimized action policies. These negative rewards 

illustrate that the actor network (proxy model) is incapable of maintaining the system voltage 

security and simultaneously reducing system line loss. However, as the training progresses,  

the actor network gradually evolves and obtains positive rewards more frequently. A positive 

reward implies that there 

is no voltage violation, and the system line loss is further reduced by taking actions. It is 

observed that the episode 
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average reward keeps fluctuating, but with an upward trend. The training process converges after 

about 1000 episodes. 

 

𝜃←𝜃+ 𝜂∇𝜃𝐽𝑄(𝜃) (21) 

𝜓←𝜓+ 𝜂∇𝜓𝐽𝑉(𝜓). (22) 

𝜓 ← 𝛽𝜓 + (1− 𝛽)           . (23) 

 

Actor Network Updating Through Policy Improvement After sufficient training, the critic 

network 𝑄𝜃 𝜋𝜙 can properly output 𝑄 values for action estimation, where a larger 𝑄 value 

indicates a better action. To improve the performance of the actor network, one direct idea is to 

build such a probability distribution, that actions with larger 𝑄 values have larger probability 

densities. Therefore, based on the current policy 𝜋𝜙′ and its critic network 𝑄𝜃 𝜋𝜙′ , the target 

probability  distribution 𝜋𝜙(⋅ |𝐻 ̃𝑡) of the actor network is aimed to be shaped as: 

The Kullback-Leibler (KL) divergence is used to measure the deviation between two 

distributions. Correspondingly, the training objective is designed to minimize the KL divergence 

between 𝜋𝜙(⋅ |𝐻𝑡) and its target distribution as: 

 where 𝐷𝐾𝐿 represents the KL divergence between two distributions. Since the value of ∫ 𝑒𝑥𝑝 

{𝑄𝜃 𝜋𝜙′ (𝐻𝑡 , 𝐴𝑡)/𝛼} 𝑑𝐴𝑡 in (25) Is independent to the selection of action 𝐴𝑡 , it can be denoted 

as 𝐹𝜃 𝜋𝜙 (𝐻𝑡) for ease of description. According to (25), the loss function is given as : 

 By substituting (13) into (26), we can equivalently express the loss function as : 

 Finally, the parameter of the action network can be updated through the mini-batch stochastic 

gradient descent. 

 

Method : 

C. Training Procedure  

The procedure of network training (i.e., actor network 𝜋𝜙, critic network 𝑄𝜃 𝜋𝜙 , value network 

𝑉𝜓 𝜋𝜙 and target network 𝑉𝜓 𝜋𝜙) is summarized as below : 

  

V. CASE STUDIES:  

A. IEEE 33-Bus Balanced Distribution System 

1. Test System Introduction A modified IEEE 33-bus distribution system with a 16-step OLTC 

transformer and 7 distributed Pv inverters, as in Fig. 4, is used for case studies. The maximum 

active and reactive power of PV inverters on different buses are also shown in this figure. 

Considering the system peak load 3.8MW, the total PV With a maximum installation capacity of 

4.6 MW, the modified IEEE 33-bus system is a PV-rich distribution network. The OLTC 

transformer, as described in Section II-A, uses the control parameters listed in Table I to regulate 

system voltage in accordance with its LDC rule. Fig. 5 shows the active and reactive load 

profiles for the entire day. In this paper, the system voltage allowed range is specified at 

0.95p.u.~1.05p.u. It is important to note that Bus 15 is the bus with PV inverters that is located 

the farthest away, making it the most susceptible to overvoltage issues when reverse power flow 

happens. In order to examine the effectiveness of various approaches for voltage regulation, only 

the voltage profiles of Bus 15 are shown in this. 
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Open DSS is used as the programming environment for the 33-bus distribution system model, 

and   Py Torch [30] is used to build the suggested RSAC algorithm in Python for network 

training. By using co-simulations between Open DSS and Python, training data is produced. In 

particular, the environment is altered by the actor network created in Python, changing the power 

flow outcomes of Open DSS in the process. The rewards and revised system states are then 

returned to Python. The RSA algorithm's hyper parameters are displayed in Table II.. 

1) Training Process 

Fig. 6 shows the episode average reward value during the training process of successive 1500 

episodes. Initially, in the early learning phase, the action policies lead to negative rewards due to 

limited positive learning experiences and un optimized action policies. These negative rewards 

illustrate that the actor network (proxy model) is incapable of maintaining the system voltage 

security and simultaneously reducing system line loss. However, as the training progresses, the 

actor network gradually evolves and obtains positive rewards more frequently. A positive reward 

implies that there is no voltage violation, and the system line loss is further reduced by taking 

actions. It is observed that the episode average reward keeps fluctuating, but with an upward 

trend. The training process converges after about 1000 episodes. 
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Fig.6. Training   process of  the RSAC  algorithm. 

1) Baseline Methods 

1) Two typical approaches are implemented as baselines to assess the voltage regulation 

performance and system line loss of the proposed method. Here are the specifics: 

2) 1) Baseline-1: In order to minimize system line loss and control the system voltage within the 

permitted range, the OLTC transformer and distributed PV inverters are coordinated using a 

hard coordination mechanism with a two-layer structure. In the first layer, an optimization 

problem based on the daily PV power forecast is solved to schedule the OLTC tap positions in 

advance for every 15 minutes. Based on this, a soft actor-critic (SAC) algorithm optimizes the 

operation points of PV inverters for real-time Volt-Var control in the second layer. 

3) Baseline-2: The popular Volt-Var droop curves are employed to control local voltage in 

photovoltaic inverters, and the OLTC transformer that was previously in use keeps its "LDC + 

time delay" control logic for tap switching. Under such a method, neither    coordinated voltage 

control nor line loss minimization is specifically designed, and both inverters and OLTC are in 

their autonomous control stages in Baseline-2. Baseline-2 is not a coordinating method as a 

result. 

2) Strong PV Power Fluctuating Scenario 

IntheBaseline-1, the15-minuteaverageofthegroundtruth load and PV power profiles shown in 

Fig. 5 and Fig. 7 respectively are regarded as the prediction for day-long OLTC  tap operation 

scheduling. If the forecasts come true to 100%, Baseline-1 might attain ideal voltage control 

performance. On the other hand, swift-moving clouds have the ability to quickly engulf a 

distribution system in one or two minutes, causing a sudden loss of nearly 70% of the PV power 
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in this area [15]. Because of this, it is exceedingly challenging to forecast the PV power profile 

over the course of a day, particularly for distribution systems with narrow area ranges. Forecast 

mistake might seriously impair Baseline-1's ability to regulate voltage.  Furthermore, OLTC 

adhering to its "LDC + time delay" control rule (as in Baseline-2 and our suggested approach) 

has the ability to adaptively modify its tap position in order to regulate voltage as needed. 

However, based on its scheduling in the OLTC, the tap location will remain constant every 15 

minutes. 

 

 

 

 
 

IV. CONCLUSION AND FUTURE WORK 

This article proposes a novel control structure aimed at coordinating inverters and On-Load Tap 

Changers (OLTC) to adjust system voltage in a "soft" manner. It allows the previously deployed 

OLTC to maintain its autonomous operation state for tap switching within this soft coordination 

framework. Moreover, by adjusting the Var output of inverters, it is possible to reduce system 

line losses and achieve coordinated voltage control. Importantly, our proposed algorithm 

demonstrates resilience to variations in the line's X/R ratio, effectively distributing the voltage 

control responsibilities between OLTC and the Var compensation provided by inverters. Case 

studies have shown that our method can consistently regulate system voltage without leading to 

Var saturation in inverters, even under conditions of high PV penetration (exceeding 100%) and 

X/R ratios below one. 

The performance of our proposed method, in terms of voltage regulation and system line loss, is 

evaluated against two baseline methods through case studies. Baseline-1, a two-layer method, 
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relies on the accuracy of PV power prediction and maintains a constant OLTC tap position 

within each dispatch interval (e.g., 15 minutes), which limits its flexibility in addressing voltage 

fluctuations caused by variable PV power. This can result in unnecessary Var compensation, 

increased system line losses, or even voltage control failures on days with significant PV power 

variability. Baseline-2, lacking a specialized coordination mechanism, depends solely on local 

control for both OLTC and inverters, yet it demonstrates consistent performance across various 

scenarios. 

Our proposed technique not only achieves overvoltage reduction and line loss minimization in all 

cases but also allows OLTC to retain its autonomous control state, enhancing the overall system 

flexibility. The operational states of the system, as discussed in the paper, remain well within the 

limits of the test systems' maximum power transmission capabilities. However, in networks that 

are heavily loaded or experiencing post-disturbance conditions, employing a learning-based 

algorithm for online voltage collapse risk identification might be viable. In such scenarios, the 

priority for OLTC and inverters collaboration could shift towards increasing the security margin 

instead of minimizing line losses, once the risk threshold is breached. This opens avenues for 

further research into detailed algorithm design. 
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